• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Hyperbolic scaling limit of non-equilibrium fluctuations for a weakly anharmonic chain

Xu, Lu (2020), Hyperbolic scaling limit of non-equilibrium fluctuations for a weakly anharmonic chain, Electronic Journal of Probability, 25, p. 1-40. 10.1214/20-EJP488

View/Open
HAL191128.pdf (567.2Kb)
Type
Article accepté pour publication ou publié
Date
2020
Journal name
Electronic Journal of Probability
Volume
25
Publisher
Institute of Mathematical Statistics
Published in
Paris
Pages
1-40
Publication identifier
10.1214/20-EJP488
Metadata
Show full item record
Author(s)
Xu, Lu
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
We consider a chain of n coupled oscillators placed on a one-dimensional lattice with periodic boundary conditions. The interaction between particles is determined by a weakly anharmonic potential Vn = r 2 /2 + σnU (r), where U has bounded second derivative and σn vanishes as n → ∞. The dynamics is perturbed by noises acting only on the positions, such that the total momentum and length are the only conserved quantities. With relative entropy technique, we prove for dynamics out of equilibrium that, if σn decays sufficiently fast, the fluctuation field of the conserved quantities converges in law to a linear p-system in the hyperbolic space-time scaling limit. The transition speed is spatially homogeneous due to the vanishing anharmonicity. We also present a quantitative bound for the speed of convergence to the corresponding hydrodynamic limit.
Subjects / Keywords
Hyperbolic scaling limit; Boltzmann–Gibbs principle; non-equilibrium fluctuation; Relative entropy

Related items

Showing items related by title and author.

  • Thumbnail
    Equilibrium fluctuations for a chain of anharmonic oscillators in the Euler scaling limit 
    Olla, Stefano; Xu, Lu (2020) Article accepté pour publication ou publié
  • Thumbnail
    Quasi-static Limit for a Hyperbolic Conservation Law 
    Marchesani, Stefano; Olla, Stefano; Xu, Lu (2021) Article accepté pour publication ou publié
  • Thumbnail
    Quasi-static limit for the asymmetric simple exclusion 
    De Masi, Anna; Marchesani, Stefano; Olla, Stefano; Xu, Lu (2022) Article accepté pour publication ou publié
  • Thumbnail
    Nonequilibrium scaling limit for a tagged particle in the simple exclusion process with long jumps 
    Jara, Milton Article accepté pour publication ou publié
  • Thumbnail
    On the scaling limits of weakly asymmetric bridges 
    Labbé, Cyril (2018) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo