• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Infinite time blow-up in the Keller-Segel system: existence and stability

Davila, Juan; Del Pino, Manuel; Dolbeault, Jean; Musso, Monica; Wei, Juncheng (2019), Infinite time blow-up in the Keller-Segel system: existence and stability. https://basepub.dauphine.fr/handle/123456789/20449

View/Open
1911.12417.pdf (233.7Kb)
Type
Document de travail / Working paper
External document link
https://hal.archives-ouvertes.fr/hal-02394787
Date
2019
Publisher
Cahier de recherche CEREMADE, Université Paris-Dauphine
Series title
Cahier de recherche CEREMADE, Université Paris-Dauphine
Published in
Paris
Pages
22
Metadata
Show full item record
Author(s)
Davila, Juan

Del Pino, Manuel

Dolbeault, Jean cc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Musso, Monica


Wei, Juncheng
University of British Columbia
Abstract (EN)
The simplest version of the parabolic-elliptic Patlak-Keller-Segel system in the two-dimensional Euclidean space has an 8π critical mass which corresponds to the exact threshold between finite-time blow-up and self-similar diffusion towards zero. Among functions with mass 8π, we find a neighborhood of a radial function such that any solution with initial condition in this neighborhood is globally defined and blows-up in infinite time with an explicit scaling involving the square root of the logarithm of the time.
Subjects / Keywords
Patlak-Keller-Segel system; chemotaxis; critical mass; blow-up; infinite time blow-up; inner-outer gluing scheme; rate; blow-up profile

Related items

Showing items related by title and author.

  • Thumbnail
    Existence and stability of infinite time blow-up in the Keller-Segel system 
    Davila, Juan; del Pino, Manuel; Dolbeault, Jean; Musso, Monica; Wei, Juncheng (2020) Document de travail / Working paper
  • Thumbnail
    The two-dimensional Keller-Segel model after blow-up 
    Schmeiser, Christian; Dolbeault, Jean (2009) Article accepté pour publication ou publié
  • Thumbnail
    Fractional Keller-Segel Equation: Global Well-posedness and Finite Time Blow-up 
    Lafleche, Laurent; Salem, Samir (2018) Document de travail / Working paper
  • Thumbnail
    A functional framework for the Keller-Segel system: logarithmic Hardy-Littlewood-Sobolev and related spectral gap inequalities 
    Campos Serrano, Juan; Dolbeault, Jean (2012) Article accepté pour publication ou publié
  • Thumbnail
    Duality in Sub-Supercritical Bubbling in the Brezis-Nirenberg Problem near the Critical Exponent 
    Del Pino, Manuel; Dolbeault, Jean; Musso, Monica (2004) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo