
Infinite time blow-up in the Keller-Segel system: existence and stability
Davila, Juan; Del Pino, Manuel; Dolbeault, Jean; Musso, Monica; Wei, Juncheng (2019), Infinite time blow-up in the Keller-Segel system: existence and stability. https://basepub.dauphine.fr/handle/123456789/20449
View/ Open
Type
Document de travail / Working paperExternal document link
https://hal.archives-ouvertes.fr/hal-02394787Date
2019Publisher
Cahier de recherche CEREMADE, Université Paris-Dauphine
Series title
Cahier de recherche CEREMADE, Université Paris-DauphinePublished in
Paris
Pages
22
Metadata
Show full item recordAuthor(s)
Davila, JuanDel Pino, Manuel
Dolbeault, Jean

CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Musso, Monica
Wei, Juncheng
University of British Columbia
Abstract (EN)
The simplest version of the parabolic-elliptic Patlak-Keller-Segel system in the two-dimensional Euclidean space has an 8π critical mass which corresponds to the exact threshold between finite-time blow-up and self-similar diffusion towards zero. Among functions with mass 8π, we find a neighborhood of a radial function such that any solution with initial condition in this neighborhood is globally defined and blows-up in infinite time with an explicit scaling involving the square root of the logarithm of the time.Subjects / Keywords
Patlak-Keller-Segel system; chemotaxis; critical mass; blow-up; infinite time blow-up; inner-outer gluing scheme; rate; blow-up profileRelated items
Showing items related by title and author.
-
Davila, Juan; del Pino, Manuel; Dolbeault, Jean; Musso, Monica; Wei, Juncheng (2020) Document de travail / Working paper
-
Schmeiser, Christian; Dolbeault, Jean (2009) Article accepté pour publication ou publié
-
Lafleche, Laurent; Salem, Samir (2018) Document de travail / Working paper
-
Campos Serrano, Juan; Dolbeault, Jean (2012) Article accepté pour publication ou publié
-
Del Pino, Manuel; Dolbeault, Jean; Musso, Monica (2004) Communication / Conférence