
A formula for the value of a stochastic game
Attia, Luc; Oliu Barton, Miquel (2019), A formula for the value of a stochastic game, PNAS - Proceedings of the National Academy of Sciences of the United States of America, 116, 52, p. 26435-26443. https://doi.org/10.1073/pnas.1908643116
View/ Open
Type
Article accepté pour publication ou publiéExternal document link
https://www.pnas.org/content/116/52/26435.short?rss=1Date
2019Journal name
PNAS - Proceedings of the National Academy of Sciences of the United States of AmericaVolume
116Number
52Publisher
National Academy of sciences
Pages
26435-26443
Publication identifier
Metadata
Show full item recordAuthor(s)
Attia, LucOliu Barton, Miquel
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
In 1953, Lloyd Shapley defined the model of stochastic games, which were the first general dynamic model of a game to be defined, and proved that competitive stochastic games have a discounted value. In 1982, Jean-François Mertens and Abraham Neyman proved that competitive stochastic games admit a robust solution concept, the value, which is equal to the limit of the discounted values as the discount rate goes to 0. Both contributions were published in PNAS. In the present paper, we provide a tractable formula for the value of competitive stochastic games.Subjects / Keywords
stochastic games; repeated games; dynamic programmingRelated items
Showing items related by title and author.
-
Oliu Barton, Miquel; Attia, Luc (2021) Article accepté pour publication ou publié
-
Gensbittel, Fabien; Oliu-Barton, Miquel; Venel, Xavier (2014) Article accepté pour publication ou publié
-
Oliu Barton, Miquel (2020) Article accepté pour publication ou publié
-
Oliu-Barton, Miquel (2018) Article accepté pour publication ou publié
-
Oliu-Barton, Miquel; Ziliotto, Bruno (2018) Document de travail / Working paper