
Nekhoroshev estimates for steep real-analytic elliptic equilibrium points
Bounemoura, Abed; Fayad, Bassam; Niederman, Laurent (2019), Nekhoroshev estimates for steep real-analytic elliptic equilibrium points, Nonlinearity, 33, 1. 10.1088/1361-6544/ab4c89
View/ Open
Type
Article accepté pour publication ou publiéDate
2019Journal name
NonlinearityVolume
33Number
1Publisher
IOP Science
Publication identifier
Metadata
Show full item recordAuthor(s)
Bounemoura, AbedCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Fayad, Bassam
Institut de Mathématiques de Jussieu - Paris Rive Gauche [IMJ-PRG]
Niederman, Laurent
Institut de Mécanique Céleste et de Calcul des Ephémérides [IMCCE]
Abstract (EN)
We prove that steep real-analytic elliptic equilibrium points are exponentially stable, generalizing results which were known only under a convexity assumption. This proves the general case of a conjecture of Nekhoroshev. This result is also an important step in our proof that generically, both in a topological and measure-theoretical sense, equilibrium points are super-exponentially stable.Subjects / Keywords
real-analytic elliptic equilibrium points; NekhoroshevRelated items
Showing items related by title and author.
-
Bounemoura, Abed; Fayad, Bassam; Niederman, Laurent (2020) Article accepté pour publication ou publié
-
Bounemoura, Abed; Fayad, Bassam; Niederman, Laurent (2015) Document de travail / Working paper
-
Bounemoura, Abed; Fayad, Bassam; Niederman, Laurent (2017) Article accepté pour publication ou publié
-
Bounemoura, Abed (2020) Document de travail / Working paper
-
Fischler, Stephane; Bounemoura, Abed (2014) Article accepté pour publication ou publié