The random pinning model with correlated disorder given by a renewal set
hal.structure.identifier | ||
dc.contributor.author | Cheliotis, Dimitris | |
hal.structure.identifier | ||
dc.contributor.author | Chino, Yuki | |
hal.structure.identifier | CEntre de REcherches en MAthématiques de la DEcision [CEREMADE] | |
dc.contributor.author | Poisat, Julien
HAL ID: 6620 | |
dc.date.accessioned | 2019-12-20T13:51:47Z | |
dc.date.available | 2019-12-20T13:51:47Z | |
dc.date.issued | 2019 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/20371 | |
dc.language.iso | en | en |
dc.subject | Pinning model | en |
dc.subject | localization transition | en |
dc.subject | free energy | en |
dc.subject | correlated disorder | en |
dc.subject | renewal | en |
dc.subject | disorder relevance | en |
dc.subject | Harris criterion | en |
dc.subject | smoothing inequality | en |
dc.subject | second moment | en |
dc.subject.ddc | 519 | en |
dc.title | The random pinning model with correlated disorder given by a renewal set | en |
dc.type | Article accepté pour publication ou publié | |
dc.description.abstracten | We investigate the effect of correlated disorder on the localization transition undergone by a renewal sequence with loop exponent α > 0, when the correlated sequence is given by another independent renewal set with loop exponent α > 0. Using the renewal structure of the disorder sequence, we compute the annealed critical point and exponent. Then, using a smoothing inequality for the quenched free energy and second moment estimates for the quenched partition function, combined with decoupling inequalities, we prove that in the case α > 2 (summable correlations), disorder is irrelevant if α < 1/2 and relevant if α > 1/2, which extends the Harris criterion for independent disorder. The case α ∈ (1, 2) (non-summable correlations) remains largely open, but we are able to prove that disorder is relevant for α > 1/ ˆ α, a condition that is expected to be non-optimal. Predictions on the criterion for disorder relevance in this case are discussed. Finally, the case α ∈ (0, 1) is somewhat special but treated for completeness: in this case, disorder has no effect on the quenched free energy, but the annealed model exhibits a phase transition. | en |
dc.relation.isversionofjnlname | Annales Henri Lebesgue | |
dc.relation.isversionofjnlissue | 2 | en |
dc.relation.isversionofjnldate | 2019-07 | |
dc.relation.isversionofjnlpages | 281-329 | en |
dc.identifier.urlsite | https://hal.archives-ouvertes.fr/hal-01590623v2 | en |
dc.subject.ddclabel | Probabilités et mathématiques appliquées | en |
dc.relation.forthcoming | non | en |
dc.relation.forthcomingprint | non | en |
dc.description.ssrncandidate | non | en |
dc.description.halcandidate | non | en |
dc.description.readership | recherche | en |
dc.description.audience | International | en |
dc.relation.Isversionofjnlpeerreviewed | non | en |
dc.relation.Isversionofjnlpeerreviewed | non | en |
dc.date.updated | 2019-12-20T13:48:16Z | |
hal.author.function | aut | |
hal.author.function | aut | |
hal.author.function | aut |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |