• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

The random pinning model with correlated disorder given by a renewal set

Cheliotis, Dimitris; Chino, Yuki; Poisat, Julien (2019), The random pinning model with correlated disorder given by a renewal set, Annales Henri Lebesgue, 2, p. 281-329

Type
Article accepté pour publication ou publié
External document link
https://hal.archives-ouvertes.fr/hal-01590623v2
Date
2019
Journal name
Annales Henri Lebesgue
Number
2
Pages
281-329
Metadata
Show full item record
Author(s)
Cheliotis, Dimitris

Chino, Yuki

Poisat, Julien
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
We investigate the effect of correlated disorder on the localization transition undergone by a renewal sequence with loop exponent α > 0, when the correlated sequence is given by another independent renewal set with loop exponent α > 0. Using the renewal structure of the disorder sequence, we compute the annealed critical point and exponent. Then, using a smoothing inequality for the quenched free energy and second moment estimates for the quenched partition function, combined with decoupling inequalities, we prove that in the case α > 2 (summable correlations), disorder is irrelevant if α < 1/2 and relevant if α > 1/2, which extends the Harris criterion for independent disorder. The case α ∈ (1, 2) (non-summable correlations) remains largely open, but we are able to prove that disorder is relevant for α > 1/ ˆ α, a condition that is expected to be non-optimal. Predictions on the criterion for disorder relevance in this case are discussed. Finally, the case α ∈ (0, 1) is somewhat special but treated for completeness: in this case, disorder has no effect on the quenched free energy, but the annealed model exhibits a phase transition.
Subjects / Keywords
Pinning model; localization transition; free energy; correlated disorder; renewal; disorder relevance; Harris criterion; smoothing inequality; second moment

Related items

Showing items related by title and author.

  • Thumbnail
    On the critical curves of the pinning and copolymer models in correlated Gaussian environment 
    Berger, Quentin; Poisat, Julien (2015) Article accepté pour publication ou publié
  • Thumbnail
    A limit theorem for the survival probability of a simple random walk among power-law renewal traps 
    Poisat, Julien; Simenhaus, François (2018) Document de travail / Working paper
  • Thumbnail
    A limit theorem for the survival probability of a simple random walk among power-law renewal obstacles 
    Poisat, Julien; Simenhaus, François (2020) Article accepté pour publication ou publié
  • Thumbnail
    Localization of a one-dimensional simple random walk among power-law renewal obstacles 
    Poisat, Julien; Simenhaus, François (2022) Document de travail / Working paper
  • Thumbnail
    Sharp critical behavior for pinning model in random correlated environment 
    Berger, Quentin; Lacoin, Hubert (2012) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo