An open microscopic model of heat conduction: evolution and non-equilibrium stationary states
hal.structure.identifier | Institut of Mathematics - Polish Academy of Sciences [PAN] | |
dc.contributor.author | Komorowski, Tomasz | * |
hal.structure.identifier | CEntre de REcherches en MAthématiques de la DEcision [CEREMADE] | |
dc.contributor.author | Olla, Stefano
HAL ID: 18345 ORCID: 0000-0003-0845-1861 | * |
hal.structure.identifier | Inria Lille - Nord Europe | |
dc.contributor.author | Simon, Marielle
HAL ID: 7207 | * |
dc.date.accessioned | 2019-12-20T13:00:17Z | |
dc.date.available | 2019-12-20T13:00:17Z | |
dc.date.issued | 2020 | |
dc.identifier.issn | 1539-6746 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/20367 | |
dc.language.iso | en | en |
dc.subject | Hamiltonian dynamic | |
dc.subject | evolution and non-equilibrium stationary states | |
dc.subject | open chain of oscillator | |
dc.subject | heat conduction | |
dc.subject | uphill heat diffusion | |
dc.subject.ddc | 519 | en |
dc.title | An open microscopic model of heat conduction: evolution and non-equilibrium stationary states | |
dc.type | Article accepté pour publication ou publié | |
dc.description.abstracten | We consider a one-dimensional chain of coupled oscillators in contact at both ends with heat baths at different temperatures, and subject to an external force at one end. The Hamiltonian dynamics in the bulk is perturbed by random exchanges of the neighbouring momenta such that the energy is locally conserved. We prove that in the stationary state the energy and the volume stretch profiles, in large scale limit, converge to the solutions of a diffusive system with Dirichlet boundary conditions. As a consequence the macroscopic temperature stationary profile presents a maximum inside the chain higher than the thermostats temperatures, as well as the possibility of uphill diffusion (energy current against the temperature gradient). Finally, we are also able to derive the non-stationary macroscopic coupled diffusive equations followed by the energy and volume stretch profiles. | |
dc.relation.isversionofjnlname | Communications in Mathematical Sciences | |
dc.relation.isversionofjnlvol | 18 | |
dc.relation.isversionofjnlissue | 3 | |
dc.relation.isversionofjnldate | 2020 | |
dc.relation.isversionofjnlpages | 751-780 | |
dc.relation.isversionofdoi | 10.4310/CMS.2020.v18.n3.a8 | |
dc.relation.isversionofjnlpublisher | International Press | |
dc.subject.ddclabel | Probabilités et mathématiques appliquées | en |
dc.relation.forthcoming | oui | en |
dc.relation.forthcomingprint | oui | en |
dc.description.ssrncandidate | non | |
dc.description.halcandidate | non | |
dc.description.readership | recherche | |
dc.description.audience | International | |
dc.relation.Isversionofjnlpeerreviewed | oui | |
dc.date.updated | 2020-07-08T12:43:16Z | |
hal.author.function | aut | |
hal.author.function | aut | |
hal.author.function | aut |