
An open microscopic model of heat conduction: evolution and non-equilibrium stationary states
Komorowski, Tomasz; Olla, Stefano; Simon, Marielle (2020), An open microscopic model of heat conduction: evolution and non-equilibrium stationary states, Communications in Mathematical Sciences, 18, 3, p. 751-780. 10.4310/CMS.2020.v18.n3.a8
Voir/Ouvrir
Type
Article accepté pour publication ou publiéDate
2020Nom de la revue
Communications in Mathematical SciencesVolume
18Numéro
3Éditeur
International Press
Pages
751-780
Identifiant publication
Métadonnées
Afficher la notice complèteAuteur(s)
Komorowski, TomaszInstitut of Mathematics - Polish Academy of Sciences [PAN]
Olla, Stefano

CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Simon, Marielle
Inria Lille - Nord Europe
Résumé (EN)
We consider a one-dimensional chain of coupled oscillators in contact at both ends with heat baths at different temperatures, and subject to an external force at one end. The Hamiltonian dynamics in the bulk is perturbed by random exchanges of the neighbouring momenta such that the energy is locally conserved. We prove that in the stationary state the energy and the volume stretch profiles, in large scale limit, converge to the solutions of a diffusive system with Dirichlet boundary conditions. As a consequence the macroscopic temperature stationary profile presents a maximum inside the chain higher than the thermostats temperatures, as well as the possibility of uphill diffusion (energy current against the temperature gradient). Finally, we are also able to derive the non-stationary macroscopic coupled diffusive equations followed by the energy and volume stretch profiles.Mots-clés
Hamiltonian dynamic; evolution and non-equilibrium stationary states; open chain of oscillator; heat conduction; uphill heat diffusionPublications associées
Affichage des éléments liés par titre et auteur.
-
Komorowski, Tomasz; Lebowitz, Joel L.; Olla, Stefano; Simon, Marielle (2022) Document de travail / Working paper
-
Olla, Stefano; Simon, Marielle; Komorowski, Tomasz (2018) Article accepté pour publication ou publié
-
Komorowski, Tomasz; Olla, Stefano; Simon, Marielle (2021) Article accepté pour publication ou publié
-
Olla, Stefano; Bernardin, Cédric (2005) Article accepté pour publication ou publié
-
Olla, Stefano; Simon, Marielle (2015) Article accepté pour publication ou publié