• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

An open microscopic model of heat conduction: evolution and non-equilibrium stationary states

Komorowski, Tomasz; Olla, Stefano; Simon, Marielle (2020), An open microscopic model of heat conduction: evolution and non-equilibrium stationary states, Communications in Mathematical Sciences, 18, 3, p. 751-780. 10.4310/CMS.2020.v18.n3.a8

View/Open
2019-submission.pdf (397.0Kb)
Type
Article accepté pour publication ou publié
Date
2020
Journal name
Communications in Mathematical Sciences
Volume
18
Number
3
Publisher
International Press
Pages
751-780
Publication identifier
10.4310/CMS.2020.v18.n3.a8
Metadata
Show full item record
Author(s)
Komorowski, Tomasz
Institut of Mathematics - Polish Academy of Sciences [PAN]
Olla, Stefano cc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Simon, Marielle
Inria Lille - Nord Europe
Abstract (EN)
We consider a one-dimensional chain of coupled oscillators in contact at both ends with heat baths at different temperatures, and subject to an external force at one end. The Hamiltonian dynamics in the bulk is perturbed by random exchanges of the neighbouring momenta such that the energy is locally conserved. We prove that in the stationary state the energy and the volume stretch profiles, in large scale limit, converge to the solutions of a diffusive system with Dirichlet boundary conditions. As a consequence the macroscopic temperature stationary profile presents a maximum inside the chain higher than the thermostats temperatures, as well as the possibility of uphill diffusion (energy current against the temperature gradient). Finally, we are also able to derive the non-stationary macroscopic coupled diffusive equations followed by the energy and volume stretch profiles.
Subjects / Keywords
Hamiltonian dynamic; evolution and non-equilibrium stationary states; open chain of oscillator; heat conduction; uphill heat diffusion

Related items

Showing items related by title and author.

  • Thumbnail
    On the Conversion of Work into Heat: Microscopic Models and Macroscopic Equations 
    Komorowski, Tomasz; Lebowitz, Joel L.; Olla, Stefano; Simon, Marielle (2022) Document de travail / Working paper
  • Thumbnail
    Macroscopic evolution of mechanical and thermal energy in a harmonic chain with random flip of velocities 
    Olla, Stefano; Simon, Marielle; Komorowski, Tomasz (2018) Article accepté pour publication ou publié
  • Thumbnail
    Hydrodynamic limit for a chain with thermal and mechanical boundary forces 
    Komorowski, Tomasz; Olla, Stefano; Simon, Marielle (2021) Article accepté pour publication ou publié
  • Thumbnail
    Fourier's law for a microscopic model of heat conduction 
    Olla, Stefano; Bernardin, Cédric (2005) Article accepté pour publication ou publié
  • Thumbnail
    Microscopic derivation of an adiabatic thermodynamic transformation 
    Olla, Stefano; Simon, Marielle (2015) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo