• français
    • English
  • français 
    • français
    • English
  • Connexion
JavaScript is disabled for your browser. Some features of this site may not work without it.
Accueil

Afficher

Cette collectionPar Date de CréationAuteursTitresSujetsNoms de revueToute la baseCentres de recherche & CollectionsPar Date de CréationAuteursTitresSujetsNoms de revue

Mon compte

Connexion

Statistiques

Afficher les statistiques d'usage

Model Misspecification in ABC: Consequences and Diagnostics

Thumbnail
Ouvrir
1708.01974.pdf (333.2Kb)
Date
2020
Indexation documentaire
Probabilités et mathématiques appliquées
Subject
approximate Bayesian computation; Asymptotics; Likelihood‐free methods; Model misspecification; Regression adjustment approximate Bayesian computation
Nom de la revue
Journal of the Royal Statistical Society. Series B, Statistical Methodology
Volume
82
Numéro
2
Date de publication
2020
Pages article
421-444
Nom de l'éditeur
Wiley
DOI
http://dx.doi.org/10.1111/rssb.12356
A paraître
oui
URI
https://basepub.dauphine.fr/handle/123456789/20365
Collections
  • CEREMADE : Publications
Métadonnées
Afficher la notice complète
Auteur
Frazier, David T.
231820 Monash University, Department of Economics
Robert, Christian P.
60 CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Rousseau, Judith
60 CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Type
Article accepté pour publication ou publié
Résumé en anglais
We analyze the behavior of approximate Bayesian computation (ABC) when the model generating the simulated data differs from the actual data generating process; i.e., when the data simulator in ABC is misspecified. We demonstrate both theoretically and in simple, but practically relevant, examples that when the model is misspecified different versions of ABC can lead to substantially different results. Our theoretical results demonstrate that under regularity conditions a version of the accept/reject ABC approach concentrates posterior mass on an appropriately defined pseudo-true parameter value. However, under model misspecification the ABC posterior does not yield credible sets with valid frequentist coverage and has non-standard asymptotic behavior. We also examine the theoretical behavior of the popular linear regression adjustment to ABC under model misspecification and demonstrate that this approach concentrates posterior mass on a completely different pseudo-true value than that obtained by the accept/reject approach to ABC. Using our theoretical results, we suggest two approaches to diagnose model misspecification in ABC. All theoretical results and diagnostics are illustrated in a simple running example.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Cette création est mise à disposition sous un contrat Creative Commons.