• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Calibration procedures for approximate Bayesian credible sets

Lee, Jeong Eun; Nicholls, Geoff K; Ryder, Robin J. (2019), Calibration procedures for approximate Bayesian credible sets, Bayesian Analysis, 14, 4, p. 1245-1269. 10.1214/19-BA1175

View/Open
1810.06433.pdf (648.7Kb)
Type
Article accepté pour publication ou publié
Date
2019
Journal name
Bayesian Analysis
Volume
14
Number
4
Publisher
International Society for Bayesian Analysis
Pages
1245-1269
Publication identifier
10.1214/19-BA1175
Metadata
Show full item record
Author(s)
Lee, Jeong Eun

Nicholls, Geoff K

Ryder, Robin J.
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
We develop and apply two calibration procedures for checking the coverage of approximate Bayesian credible sets, including intervals estimated using Monte Carlo methods. The user has an ideal prior and likelihood, but generates a credible set for an approximate posterior based on some approximate prior and likelihood. We estimate the realised posterior coverage achieved by the approximate credible set. This is the coverage of the unknown “true” parameter if the data are a realisation of the user’s ideal observation model conditioned on the parameter, and the parameter is a draw from the user’s ideal prior. In one approach we estimate the posterior coverage at the data by making a semi-parametric logistic regression of binary coverage outcomes on simulated data against summary statistics evaluated on simulated data. In another we use Importance Sampling from the approximate posterior, windowing simulated data to fall close to the observed data. We illustrate our methods on four examples.
Subjects / Keywords
Monte Carlo; approximation; calibration; credible intervals

Related items

Showing items related by title and author.

  • Thumbnail
    Missing data in a stochastic Dollo model for binary trait data, and its application to the dating of Proto-Indo-European 
    Nicholls, Geoff K; Ryder, Robin J. (2011) Article accepté pour publication ou publié
  • Thumbnail
    TraitLab: A MatLab package for fitting and simulating binary tree-like data 
    Nicholls, Geoff K; Ryder, Robin J.; Welch, David (2011) Document de travail / Working paper
  • Thumbnail
    Phylogenetic models for Semitic core vocabularies 
    Ryder, Robin J.; Nicholls, Geoff K (2011) Communication / Conférence
  • Thumbnail
    Component-wise approximate Bayesian computation via Gibbs-like steps 
    Clarté, Grégoire; Ryder, Robin J.; Robert, Christian P.; Stoehr, Julien (2019) Document de travail / Working paper
  • Thumbnail
    Comment: Approximate Bayesian Computation - Sequential Quasi Monte Carlo 
    Ryder, Robin J. (2015) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo