• français
    • English
  • français 
    • français
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
BIRD Home

Browse

This CollectionBy Issue DateAuthorsTitlesSubjectsJournals BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesSubjectsJournals

My Account

Login

Statistics

View Usage Statistics

Calibration procedures for approximate Bayesian credible sets

Thumbnail
View/Open
1810.06433.pdf (648.7Kb)
Date
2019
Dewey
Probabilités et mathématiques appliquées
Sujet
Monte Carlo; approximation; calibration; credible intervals
Journal issue
Bayesian Analysis
Volume
14
Number
4
Publication date
10-2019
Article pages
1245-1269
Publisher
International Society for Bayesian Analysis
DOI
http://dx.doi.org/10.1214/19-BA1175
URI
https://basepub.dauphine.fr/handle/123456789/20364
Collections
  • CEREMADE : Publications
Metadata
Show full item record
Author
Lee, Jeong Eun
Nicholls, Geoff K
104263 Department of Statistics [Oxford]
Ryder, Robin J.
60 CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Type
Article accepté pour publication ou publié
Abstract (EN)
We develop and apply two calibration procedures for checking the coverage of approximate Bayesian credible sets, including intervals estimated using Monte Carlo methods. The user has an ideal prior and likelihood, but generates a credible set for an approximate posterior based on some approximate prior and likelihood. We estimate the realised posterior coverage achieved by the approximate credible set. This is the coverage of the unknown “true” parameter if the data are a realisation of the user’s ideal observation model conditioned on the parameter, and the parameter is a draw from the user’s ideal prior. In one approach we estimate the posterior coverage at the data by making a semi-parametric logistic regression of binary coverage outcomes on simulated data against summary statistics evaluated on simulated data. In another we use Importance Sampling from the approximate posterior, windowing simulated data to fall close to the observed data. We illustrate our methods on four examples.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Content on this site is licensed under a Creative Commons 2.0 France (CC BY-NC-ND 2.0) license.