• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Affine Volterra processes

Abi Jaber, Eduardo; Larsson, Martin; Pulido, Sergio (2019), Affine Volterra processes, The Annals of Applied Probability, 29, 5, p. 3155-3200. 10.1214/19-AAP1477

View/Open
Affine_Volterra_20180311.pdf (559.4Kb)
Type
Article accepté pour publication ou publié
Date
2019
Journal name
The Annals of Applied Probability
Volume
29
Number
5
Publisher
Institute of Mathematical Statistics
Pages
3155-3200
Publication identifier
10.1214/19-AAP1477
Metadata
Show full item record
Author(s)
Abi Jaber, Eduardo
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Larsson, Martin
Department of Mathematics - ETH
Pulido, Sergio
Laboratoire de Mathématiques et Modélisation d'Evry [LaMME]
Abstract (EN)
We introduce affine Volterra processes, defined as solutions of certain stochastic convolution equations with affine coefficients. Classical affine diffusions constitute a special case, but affine Volterra processes are neither semimartingales, nor Markov processes in general. We provide explicit exponential-affine representations of the Fourier–Laplace functional in terms of the solution of an associated system of deterministic integral equations of convolution type, extending well-known formulas for classical affine diffusions. For specific state spaces, we prove existence, uniqueness, and invariance properties of solutions of the corresponding stochastic convolution equations. Our arguments avoid infinite-dimensional stochastic analysis as well as stochastic integration with respect to non-semimartingales, relying instead on tools from the theory of finite-dimensional deterministic convolution equations. Our findings generalize and clarify recent results in the literature on rough volatility models in finance.
Subjects / Keywords
stochastic Volterra equations; Riccati-Volterra equations; rough volatility; affine processes

Related items

Showing items related by title and author.

  • Thumbnail
    Stochastic Invariance and Stochastic Volterra Equations 
    Abi Jaber, Eduardo (2018-10-18) Thèse
  • Thumbnail
    Markovian structure of the Volterra Heston model 
    Abi Jaber, Eduardo; El Euch, Omar (2019) Article accepté pour publication ou publié
  • Thumbnail
    Multi-factor approximation of rough volatility models 
    Abi jaber, Eduardo; El Euch, Omar (2019) Article accepté pour publication ou publié
  • Thumbnail
    Lifting the Heston model 
    Abi Jaber, Eduardo (2019) Article accepté pour publication ou publié
  • Thumbnail
    Stochastic invariance of closed sets for jump-diffusions with non-Lipschitz coefficients 
    Abi Jaber, Eduardo (2017) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo