PBDW method for state estimation: error analysis for noisy data and nonlinear formulation
hal.structure.identifier | EDF-R and D, Research Group R16 (Energy Strategy and Economics), | |
dc.contributor.author | Gong, Helin | |
hal.structure.identifier | Laboratoire Jacques-Louis Lions [LJLL (UMR_7598)] | |
dc.contributor.author | Maday, Yvon | |
hal.structure.identifier | CEntre de REcherches en MAthématiques de la DEcision [CEREMADE] | |
dc.contributor.author | Mula, Olga
HAL ID: 1531 ORCID: 0000-0002-3017-6598 | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | Taddei, Tommaso | |
dc.date.accessioned | 2019-12-18T12:51:35Z | |
dc.date.available | 2019-12-18T12:51:35Z | |
dc.date.issued | 2019 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/20340 | |
dc.language.iso | en | en |
dc.subject | variational data assimilation | en |
dc.subject | parameterized partial differentialequations | en |
dc.subject | model order reduction | en |
dc.subject.ddc | 510 | en |
dc.title | PBDW method for state estimation: error analysis for noisy data and nonlinear formulation | en |
dc.type | Document de travail / Working paper | |
dc.description.abstracten | We present an error analysis and further numerical investigations of the Parameterized-Background Data-Weak (PBDW) formulation to variational Data Assimilation (state estimation), proposed in [Y Maday, AT Patera, JD Penn, M Yano, Int J Numer Meth Eng, 102(5), 933-965]. The PBDW algorithm is a state estimation method involving reduced models. It aims at approximating an unknown function utrue living in a high-dimensional Hilbert space from M measurement observations given in the form ym=ℓm(utrue),m=1,…,M, where ℓm are linear functionals. The method approximates utrue with u^=z^+η^. The \emph{background} z^ belongs to an N-dimensional linear space ZN built from reduced modelling of a parameterized mathematical model, and the \emph{update} η^ belongs to the space UM spanned by the Riesz representers of (ℓ1,…,ℓM). When the measurements are noisy {--- i.e., ym=ℓm(utrue)+ϵm with ϵm being a noise term --- } the classical PBDW formulation is not robust in the sense that, if N increases, the reconstruction accuracy degrades. In this paper, we propose to address this issue with an extension of the classical formulation, {which consists in} searching for the background z^ either on the whole ZN in the noise-free case, or on a well-chosen subset KN⊂ZN in presence of noise. The restriction to KN makes the reconstruction be nonlinear and is the key to make the algorithm significantly more robust against noise. We {further} present an \emph{a priori} error and stability analysis, and we illustrate the efficiency of the approach on several numerical examples. | en |
dc.publisher.name | Cahier de recherche CEREMADE, Université Paris-Dauphine | en |
dc.publisher.city | Paris | en |
dc.identifier.citationpages | 30 | en |
dc.relation.ispartofseriestitle | Cahier de recherche CEREMADE, Université Paris-Dauphine | en |
dc.identifier.urlsite | https://hal.archives-ouvertes.fr/hal-02404316 | en |
dc.subject.ddclabel | Mathématiques | en |
dc.identifier.citationdate | 2019-12 | |
dc.description.ssrncandidate | non | en |
dc.description.halcandidate | non | en |
dc.description.readership | recherche | en |
dc.description.audience | International | en |
dc.date.updated | 2019-12-18T12:41:31Z | |
hal.author.function | aut | |
hal.author.function | aut | |
hal.author.function | aut | |
hal.author.function | aut |