
PBDW method for state estimation: error analysis for noisy data and nonlinear formulation
Gong, Helin; Maday, Yvon; Mula, Olga; Taddei, Tommaso (2019), PBDW method for state estimation: error analysis for noisy data and nonlinear formulation. https://basepub.dauphine.fr/handle/123456789/20340
Voir/Ouvrir
Type
Document de travail / Working paperLien vers un document non conservé dans cette base
https://hal.archives-ouvertes.fr/hal-02404316Date
2019Éditeur
Cahier de recherche CEREMADE, Université Paris-Dauphine
Titre de la collection
Cahier de recherche CEREMADE, Université Paris-DauphineVille d’édition
Paris
Pages
30
Métadonnées
Afficher la notice complèteAuteur(s)
Gong, HelinEDF-R and D, Research Group R16 (Energy Strategy and Economics),
Maday, Yvon
Laboratoire Jacques-Louis Lions [LJLL (UMR_7598)]
Mula, Olga

CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Taddei, Tommaso
Institut de Mathématiques de Bordeaux [IMB]
Résumé (EN)
We present an error analysis and further numerical investigations of the Parameterized-Background Data-Weak (PBDW) formulation to variational Data Assimilation (state estimation), proposed in [Y Maday, AT Patera, JD Penn, M Yano, Int J Numer Meth Eng, 102(5), 933-965]. The PBDW algorithm is a state estimation method involving reduced models. It aims at approximating an unknown function utrue living in a high-dimensional Hilbert space from M measurement observations given in the form ym=ℓm(utrue),m=1,…,M, where ℓm are linear functionals. The method approximates utrue with u^=z^+η^. The \emph{background} z^ belongs to an N-dimensional linear space ZN built from reduced modelling of a parameterized mathematical model, and the \emph{update} η^ belongs to the space UM spanned by the Riesz representers of (ℓ1,…,ℓM). When the measurements are noisy {--- i.e., ym=ℓm(utrue)+ϵm with ϵm being a noise term --- } the classical PBDW formulation is not robust in the sense that, if N increases, the reconstruction accuracy degrades. In this paper, we propose to address this issue with an extension of the classical formulation, {which consists in} searching for the background z^ either on the whole ZN in the noise-free case, or on a well-chosen subset KN⊂ZN in presence of noise. The restriction to KN makes the reconstruction be nonlinear and is the key to make the algorithm significantly more robust against noise. We {further} present an \emph{a priori} error and stability analysis, and we illustrate the efficiency of the approach on several numerical examples.Mots-clés
variational data assimilation; parameterized partial differentialequations; model order reductionPublications associées
Affichage des éléments liés par titre et auteur.
-
Argaud, J. P.; Bouriquet, B.; Gong, Helin; Maday, Yvon; Mula, Olga (2018) Article accepté pour publication ou publié
-
Argaud, J. P.; Bouriquet, B.; Gong, Helin; Maday, Yvon; Mula, Olga (2016) Communication / Conférence
-
Maday, Yvon; Mula, Olga; Turinici, Gabriel (2016) Article accepté pour publication ou publié
-
Cohen, Albert; Dahmen, Wolfgang; Mula, Olga; Nichols, James (2022) Article accepté pour publication ou publié
-
Cohen, Albert; Dahmen, Wolfgang; DeVore, Ron; Fadili, Jalal M.; Mula, Olga; Nichols, James (2020) Article accepté pour publication ou publié