• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

PBDW method for state estimation: error analysis for noisy data and nonlinear formulation

Gong, Helin; Maday, Yvon; Mula, Olga; Taddei, Tommaso (2019), PBDW method for state estimation: error analysis for noisy data and nonlinear formulation. https://basepub.dauphine.fr/handle/123456789/20340

View/Open
1906.00810.pdf (2.557Mb)
Type
Document de travail / Working paper
External document link
https://hal.archives-ouvertes.fr/hal-02404316
Date
2019
Publisher
Cahier de recherche CEREMADE, Université Paris-Dauphine
Series title
Cahier de recherche CEREMADE, Université Paris-Dauphine
Published in
Paris
Pages
30
Metadata
Show full item record
Author(s)
Gong, Helin
EDF-R and D, Research Group R16 (Energy Strategy and Economics),
Maday, Yvon
Laboratoire Jacques-Louis Lions [LJLL (UMR_7598)]
Mula, Olga cc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Taddei, Tommaso
Institut de Mathématiques de Bordeaux [IMB]
Abstract (EN)
We present an error analysis and further numerical investigations of the Parameterized-Background Data-Weak (PBDW) formulation to variational Data Assimilation (state estimation), proposed in [Y Maday, AT Patera, JD Penn, M Yano, Int J Numer Meth Eng, 102(5), 933-965]. The PBDW algorithm is a state estimation method involving reduced models. It aims at approximating an unknown function utrue living in a high-dimensional Hilbert space from M measurement observations given in the form ym=ℓm(utrue),m=1,…,M, where ℓm are linear functionals. The method approximates utrue with u^=z^+η^. The \emph{background} z^ belongs to an N-dimensional linear space ZN built from reduced modelling of a parameterized mathematical model, and the \emph{update} η^ belongs to the space UM spanned by the Riesz representers of (ℓ1,…,ℓM). When the measurements are noisy {--- i.e., ym=ℓm(utrue)+ϵm with ϵm being a noise term --- } the classical PBDW formulation is not robust in the sense that, if N increases, the reconstruction accuracy degrades. In this paper, we propose to address this issue with an extension of the classical formulation, {which consists in} searching for the background z^ either on the whole ZN in the noise-free case, or on a well-chosen subset KN⊂ZN in presence of noise. The restriction to KN makes the reconstruction be nonlinear and is the key to make the algorithm significantly more robust against noise. We {further} present an \emph{a priori} error and stability analysis, and we illustrate the efficiency of the approach on several numerical examples.
Subjects / Keywords
variational data assimilation; parameterized partial differentialequations; model order reduction

Related items

Showing items related by title and author.

  • Thumbnail
    Sensor placement in nuclear reactors based on the generalized empirical interpolation method 
    Argaud, J. P.; Bouriquet, B.; Gong, Helin; Maday, Yvon; Mula, Olga (2018) Article accepté pour publication ou publié
  • Thumbnail
    Stabilization of (G)EIM in presence of measurement noise: application to nuclear reactor physics 
    Argaud, J. P.; Bouriquet, B.; Gong, Helin; Maday, Yvon; Mula, Olga (2016) Communication / Conférence
  • Thumbnail
    Convergence analysis of the Generalized Empirical Interpolation Method 
    Maday, Yvon; Mula, Olga; Turinici, Gabriel (2016) Article accepté pour publication ou publié
  • Thumbnail
    Nonlinear reduced models for state and parameter estimation 
    Cohen, Albert; Dahmen, Wolfgang; Mula, Olga; Nichols, James (2022) Article accepté pour publication ou publié
  • Thumbnail
    Optimal reduced model algorithms for data-based state estimation 
    Cohen, Albert; Dahmen, Wolfgang; DeVore, Ron; Fadili, Jalal M.; Mula, Olga; Nichols, James (2020) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo