
Generalized compressible flows and solutions of the H(div) geodesic problem
Gallouët, Thomas; Natale, Andrea; Vialard, François-Xavier (2020), Generalized compressible flows and solutions of the H(div) geodesic problem, Archive for Rational Mechanics and Analysis, 235, p. 1707–1762. 10.1007/s00205-019-01453-x
Voir/Ouvrir
Type
Article accepté pour publication ou publiéDate
2020Nom de la revue
Archive for Rational Mechanics and AnalysisNuméro
235Éditeur
Springer
Ville d’édition
Paris
Pages
1707–1762
Identifiant publication
Métadonnées
Afficher la notice complèteAuteur(s)
Gallouët, ThomasCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Natale, Andrea
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Vialard, François-Xavier
Laboratoire d'Informatique Gaspard-Monge [LIGM]
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Résumé (EN)
We study the geodesic problem on the group of diffeomorphism of a domain M⊂Rd, equipped with the H(div) metric. The geodesic equations coincide with the Camassa-Holm equation when d=1, and represent one of its possible multi-dimensional generalizations when d>1. We propose a relaxation à la Brenier of this problem, in which solutions are represented as probability measures on the space of continuous paths on the cone over M. We use this relaxation to prove that smooth H(div) geodesics are globally length minimizing for short times. We also prove that there exists a unique pressure field associated to solutions of our relaxation. Finally, we propose a numerical scheme to construct generalized solutions on the cone and present some numerical results illustrating the relation between the generalized Camassa-Holm and incompressible Euler solutions.Mots-clés
geodesic problem; fluid flowsPublications associées
Affichage des éléments liés par titre et auteur.
-
Gallouët, Thomas; Natale, Andrea; Vialard, François-Xavier (2018) Document de travail / Working paper
-
Di Marino, Simone; Natale, Andrea; Tahraoui, Rabah; Vialard, François-Xavier (2019-06) Document de travail / Working paper
-
Benamou, Jean-David; Gallouët, Thomas; Vialard, François-Xavier (2019) Article accepté pour publication ou publié
-
Gallouët, Thomas; Vialard, François-Xavier (2018) Article accepté pour publication ou publié
-
Gallouët, Thomas; Mérigot, Quentin; Natale, Andrea (2022) Article accepté pour publication ou publié