• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Generalized compressible flows and solutions of the H(div) geodesic problem

Gallouët, Thomas; Natale, Andrea; Vialard, François-Xavier (2020), Generalized compressible flows and solutions of the H(div) geodesic problem, Archive for Rational Mechanics and Analysis, 235, p. 1707–1762. 10.1007/s00205-019-01453-x

View/Open
RelaxationCamassaHolm_final2.pdf (1.220Mb)
Type
Article accepté pour publication ou publié
Date
2020
Journal name
Archive for Rational Mechanics and Analysis
Number
235
Publisher
Springer
Published in
Paris
Pages
1707–1762
Publication identifier
10.1007/s00205-019-01453-x
Metadata
Show full item record
Author(s)
Gallouët, Thomas
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Natale, Andrea
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Vialard, François-Xavier
Laboratoire d'Informatique Gaspard-Monge [LIGM]
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
We study the geodesic problem on the group of diffeomorphism of a domain M⊂Rd, equipped with the H(div) metric. The geodesic equations coincide with the Camassa-Holm equation when d=1, and represent one of its possible multi-dimensional generalizations when d>1. We propose a relaxation à la Brenier of this problem, in which solutions are represented as probability measures on the space of continuous paths on the cone over M. We use this relaxation to prove that smooth H(div) geodesics are globally length minimizing for short times. We also prove that there exists a unique pressure field associated to solutions of our relaxation. Finally, we propose a numerical scheme to construct generalized solutions on the cone and present some numerical results illustrating the relation between the generalized Camassa-Holm and incompressible Euler solutions.
Subjects / Keywords
geodesic problem; fluid flows

Related items

Showing items related by title and author.

  • Thumbnail
    Generalized compressible fluid flows and solutions of the Camassa-Holm variational model 
    Gallouët, Thomas; Natale, Andrea; Vialard, François-Xavier (2018) Document de travail / Working paper
  • Thumbnail
    Metric completion of Diff([0,1]) with the H1 right-invariant metric 
    Di Marino, Simone; Natale, Andrea; Tahraoui, Rabah; Vialard, François-Xavier (2019-06) Document de travail / Working paper
  • Thumbnail
    Second order models for optimal transport and cubic splines on the Wasserstein space 
    Benamou, Jean-David; Gallouët, Thomas; Vialard, François-Xavier (2019) Article accepté pour publication ou publié
  • Thumbnail
    The Camassa-Holm equation as an incompressible Euler equation: a geometric point of view 
    Gallouët, Thomas; Vialard, François-Xavier (2018) Article accepté pour publication ou publié
  • Thumbnail
    Convergence of a Lagrangian Discretization for Barotropic Fluids and Porous Media Flow 
    Gallouët, Thomas; Mérigot, Quentin; Natale, Andrea (2022) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo