Show simple item record

dc.contributor.authorMeng, Long
dc.date.accessioned2019-12-18T09:01:42Z
dc.date.available2019-12-18T09:01:42Z
dc.date.issued2019
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/20332
dc.language.isoenen
dc.subjectSchrödinger Coulomb systemen
dc.subject.ddc515en
dc.titleA note about the mixed regularity of Schrödinger Coulomb systemen
dc.typeDocument de travail / Working paper
dc.description.abstractenWe give a short and unified proof of mixed regularity of Coulomb system for several cases: antisymmetric case with order of derivatives smaller than 1.25 which is the best bound; mixture of antisymmetry and non-antisymmetry with order of derivatives 1+β and α respevtively for 0≤0<α<0.75, 0.75<β<1.25 and α+β<1.5 which is also the oprtimal bound; and purely non-antisymmetric case with order of derivatives up to 0.75. In addition to Hardy type inequality, it is based on the Herbst inequality. Such results are of particular importance for the study of sparse grid-like expansions of the wavefunctions. Moreover, we can get how fast the norm of these derivative can increase with the number of electrons.en
dc.publisher.cityParisen
dc.identifier.citationpages13en
dc.relation.ispartofseriestitleCahier de recherche CEREMADE, Université Paris-Dauphineen
dc.subject.ddclabelAnalyseen
dc.identifier.citationdate2019-12
dc.description.ssrncandidatenonen
dc.description.halcandidatenonen
dc.description.readershiprechercheen
dc.description.audienceInternationalen
dc.date.updated2019-12-18T08:59:16Z
hal.person.labIds60


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record