
Randomized Contractions for Multiobjective Minimum Cuts
Aissi, Hassene; Mahjoub, Ali Ridha; Ravi, Ramamoorthi (2017), Randomized Contractions for Multiobjective Minimum Cuts, dans Pruhs, Kirk; Sohler, Christian, 25th Annual European Symposium on Algorithms (ESA 2017), Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik, p. 6:1-6:13. 10.4230/LIPIcs.ESA.2017.6
Voir/Ouvrir
Type
Communication / ConférenceDate
2017Titre du colloque
25th Annual European Symposium on Algorithms (ESA 2017)Date du colloque
2017-09Ville du colloque
ViennaPays du colloque
AustriaTitre de l'ouvrage
25th Annual European Symposium on Algorithms (ESA 2017)Auteurs de l’ouvrage
Pruhs, Kirk; Sohler, ChristianÉditeur
Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik
Isbn
978-3-95977-049-1
Pages
6:1-6:13
Identifiant publication
Métadonnées
Afficher la notice complèteAuteur(s)
Aissi, HasseneLaboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Mahjoub, Ali Ridha
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Ravi, Ramamoorthi
Computer Science Department - Carnegie Mellon University
Résumé (EN)
We show that Karger's randomized contraction method (SODA 93) can be adapted to multiobjective global minimum cut problems with a constant number of edge or node budget constraints to give efficient algorithms. For global minimum cuts with a single edge-budget constraint, our extension of the randomized contraction method has running time tilde{O}(n^3) in an n-node graph improving upon the best-known randomized algorithm with running time tilde{O}(n^4) due to Armon and Zwick (Algorithmica 2006). Our analysis also gives a new upper bound of O(n^3) for the number of optimal solutions for a single edge-budget min cut problem. For the case of (k-1) edge-budget constraints, the extension of our algorithm saves a logarithmic factor from the best-known randomized running time of O(n^{2k} log^3 n). A main feature of our algorithms is to adaptively choose, at each step, the appropriate cost function used in the random selection of edges to be contracted. For the global min cut problem with a constant number of node budgets, we give a randomized algorithm with running time tilde{O}(n^2), improving the current best determinisitic running time of O(n^3) due to Goemans and Soto (SIAM Journal on Discrete Mathematics 2013). Our method also shows that the total number of distinct optimal solutions is bounded by O(n^2) as in the case of global min-cuts. Our algorithm extends to the node-budget constrained global min cut problem excluding a given sink with the same running time and bound on number of optimal solutions, again improving upon the best-known running time by a factor of O(n). For node-budget constrained problems, our improvements arise from incorporating the idea of merging any infeasible super-nodes that arise during the random contraction process. In contrast to cuts excluding a sink, we note that the node-cardinality constrained min-cut problem containing a given source is strongly NP-hard using a reduction from graph bisection.Mots-clés
minimum cut; multiobjective optimization; budget constraints; graph algorithms; randomized algorithmsPublications associées
Affichage des éléments liés par titre et auteur.
-
Aissi, Hassene; Mahjoub, Ali Ridha; McCormick, S. Thomas; Queyranne, Maurice (2014) Communication / Conférence
-
Nourry, Charles; Mahjoub, Ali Ridha; Aissi, Hassene (2022) Communication / Conférence
-
Aissi, Hassene; McCormick, S. Thomas; Queyranne, Maurice (2020) Communication / Conférence
-
Lacroix, Mathieu; Mahjoub, Ali Ridha; Martin, Sébastien (2012) Communication / Conférence
-
Borne, Sylvie; Mahjoub, Ali Ridha; Taktak, Raouia (2013) Article accepté pour publication ou publié