• français
    • English
  • English 
    • français
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
BIRD Home

Browse

This CollectionBy Issue DateAuthorsTitlesSubjectsJournals BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesSubjectsJournals

My Account

Login

Statistics

View Usage Statistics

Clustering with Lower-Bounded Sizes - A General Graph-Theoretic Framework

Thumbnail
Date
2018
Dewey
Programmation, logiciels, organisation des données
Sujet
Clustering; Computational complexity; Approximation algorithms; Anonymisation
Journal issue
Algorithmica
Volume
80
Number
9
Publication date
09-2018
Article pages
2517-2550
Publisher
Springer
DOI
http://dx.doi.org/10.1007/s00453-017-0374-5
URI
https://basepub.dauphine.fr/handle/123456789/20312
Collections
  • LAMSADE : Publications
Metadata
Show full item record
Author
Abu-Khzam, Faisal N.
status unknown
Bazgan, Cristina
989 Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Casel, Katrin
173769 Theoretical Computer Science, University of Trier, Germany
Fernau, Henning
173769 Theoretical Computer Science, University of Trier, Germany
Type
Article accepté pour publication ou publié
Abstract (EN)
Classical clustering problems search for a partition of objects into a fixed number of clusters. In many scenarios, however, the number of clusters is not known or necessarily fixed. Further, clusters are sometimes only considered to be of significance if they have a certain size. We discuss clustering into sets of minimum cardinality k without a fixed number of sets and present a general model for these types of problems. This general framework allows the comparison of different measures to assess the quality of a clustering. We specifically consider nine quality-measures and classify the complexity of the resulting problems with respect to k. Further, we derive some polynomial-time solvable cases for k=2 with connections to matching-type problems which, among other graph problems, then are used to compute approximations for larger values of k.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Content on this site is licensed under a Creative Commons 2.0 France (CC BY-NC-ND 2.0) license.