Show simple item record

hal.structure.identifierCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
dc.contributor.authorBounemoura, Abed
dc.date.accessioned2019-11-21T12:55:30Z
dc.date.available2019-11-21T12:55:30Z
dc.date.issued2016
dc.identifier.issn0001-8708
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/20229
dc.language.isoenen
dc.subjectHamiltonian systemsen
dc.subjectKAM theoryen
dc.subject.ddc515en
dc.titleNon-degenerate Liouville tori are KAM stableen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenIn this short note, we prove that a quasi-periodic torus, with a non-resonant frequency (that can be Diophantine or Liouville) and which is invariant by a sufficiently regular Hamiltonian flow, is KAM stable provided it is Kolmogorov non-degenerate. When the Hamiltonian is smooth (respectively Gevrey-smooth, respectively real-analytic), the invariant tori are smooth (respectively Gevrey-smooth, respectively real-analytic). This answers a question raised in a recent work by Eliasson, Fayad and Krikorian [6]. We also take the opportunity to ask other questions concerning the stability of non-resonant invariant quasi-periodic tori in (analytic or smooth) Hamiltonian systems.en
dc.relation.isversionofjnlnameAdvances in Mathematics
dc.relation.isversionofjnlvol292en
dc.relation.isversionofjnldate2016-04
dc.relation.isversionofjnlpages42-51en
dc.relation.isversionofdoi10.1016/j.aim.2016.01.012en
dc.relation.isversionofjnlpublisherElsevieren
dc.subject.ddclabelAnalyseen
dc.relation.forthcomingnonen
dc.relation.forthcomingprintnonen
dc.description.ssrncandidatenonen
dc.description.halcandidatenonen
dc.description.readershiprechercheen
dc.description.audienceInternationalen
dc.relation.Isversionofjnlpeerreviewedouien
dc.relation.Isversionofjnlpeerreviewedouien
dc.date.updated2019-11-21T12:52:44Z
hal.author.functionaut


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record