dc.contributor.author | Melinand, Benjamin | |
dc.contributor.author | Zumbrun, Kevin | |
dc.date.accessioned | 2019-11-20T11:45:24Z | |
dc.date.available | 2019-11-20T11:45:24Z | |
dc.date.issued | 2019 | |
dc.identifier.issn | 01672789 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/20223 | |
dc.language.iso | en | en |
dc.subject | Stability of steady waves | en |
dc.subject | Bounded domains | en |
dc.subject | Isentropic gas | en |
dc.subject | Evans function | en |
dc.subject.ddc | 515 | en |
dc.title | Existence and stability of steady compressible Navier–Stokes solutions on a finite interval with noncharacteristic boundary conditions | en |
dc.type | Article accepté pour publication ou publié | |
dc.description.abstracten | We study existence and stability of steady solutions of the isentropic compressible Navier–Stokes equations on a finite interval with noncharacteristic boundary conditions, for general not necessarily small-amplitude data. We show that there exists a unique solution, about which the linearized spatial operator possesses (i) a spectral gap between neutral and growing/decaying modes, and (ii) an even number of nonstable eigenvalues (with a nonnegative real part). In the case that there are no nonstable eigenvalues, i.e., of spectral stability, we show this solution to be nonlinearly exponentially stable in . Using “Goodman-type” weighted energy estimates, we establish spectral stability for small-amplitude data. For large-amplitude data, we obtain high-frequency stability, reducing stability investigations to a bounded frequency regime. On this remaining, bounded-frequency regime, we carry out a numerical Evans function study, with results again indicating universal stability of solutions. | en |
dc.relation.isversionofjnlname | Physica D: Nonlinear Phenomena | |
dc.relation.isversionofjnlvol | 394 | en |
dc.relation.isversionofjnlissue | 1 | en |
dc.relation.isversionofjnldate | 2019-07 | |
dc.relation.isversionofjnlpages | 16-25 | en |
dc.relation.isversionofdoi | 10.1016/j.physd.2019.01.006 | en |
dc.identifier.urlsite | https://hal.archives-ouvertes.fr/hal-01625910v1 | en |
dc.relation.isversionofjnlpublisher | Elsevier | en |
dc.subject.ddclabel | Analyse | en |
dc.relation.forthcoming | non | en |
dc.relation.forthcomingprint | non | en |
dc.description.ssrncandidate | non | en |
dc.description.halcandidate | non | en |
dc.description.readership | recherche | en |
dc.description.audience | International | en |
dc.relation.Isversionofjnlpeerreviewed | non | en |
dc.relation.Isversionofjnlpeerreviewed | non | en |
dc.date.updated | 2019-11-20T11:42:17Z | |
hal.person.labIds | 60 | |
hal.person.labIds | 121644 | |