Show simple item record

hal.structure.identifierLaboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
dc.contributor.authorLaraki, Rida
HAL ID: 179670
ORCID: 0000-0002-4898-2424
hal.structure.identifierCNRS
dc.contributor.authorMertikopoulos, Panayotis
HAL ID: 1933
ORCID: 0000-0003-2026-9616
dc.date.accessioned2019-11-05T11:15:48Z
dc.date.available2019-11-05T11:15:48Z
dc.date.issued2012
dc.identifier.issn0022-0531
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/20207
dc.descriptionLe PDF est la version auteuren
dc.language.isoenen
dc.subjectGame dynamicsen
dc.subjectHigher order dynamical systemsen
dc.subject(Weakly) dominated strategiesen
dc.subjectLearningen
dc.subjectReplicator dynamicsen
dc.subjectStability of equilibriaen
dc.subject.ddc519en
dc.subject.classificationjelC.C6.C61en
dc.subject.classificationjelC.C6.C62en
dc.subject.classificationjelC.C7.C72en
dc.subject.classificationjelC.C7.C73en
dc.titleHigher Order Games Dynamicsen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenContinuous-time game dynamics are typically first order systems where payoffs determine the growth rate of the playersʼ strategy shares. In this paper, we investigate what happens beyond first order by viewing payoffs as higher order forces of change, specifying e.g. the acceleration of the playersʼ evolution instead of its velocity (a viewpoint which emerges naturally when it comes to aggregating empirical data of past instances of play). To that end, we derive a wide class of higher order game dynamics, generalizing first order imitative dynamics, and, in particular, the replicator dynamics. We show that strictly dominated strategies become extinct in n-th order payoff-monotonic dynamics n orders as fast as in the corresponding first order dynamics; furthermore, in stark contrast to first order, weakly dominated strategies also become extinct for n⩾2. All in all, higher order payoff-monotonic dynamics lead to the elimination of weakly dominated strategies, followed by the iterated deletion of strictly dominated strategies, thus providing a dynamic justification of the well-known epistemic rationalizability process of Dekel and Fudenberg [7]. Finally, we also establish a higher order analogue of the folk theorem of evolutionary game theory, and we show that convergence to strict equilibria in n-th order dynamics is n orders as fast as in first order.en
dc.relation.isversionofjnlnameJournal of Economic Theory
dc.relation.isversionofjnlvol148en
dc.relation.isversionofjnlissue6en
dc.relation.isversionofjnldate2013
dc.relation.isversionofjnlpages2666-2695en
dc.relation.isversionofdoi10.1016/j.jet.2013.08.002en
dc.relation.isversionofjnlpublisherElsevieren
dc.subject.ddclabelProbabilités et mathématiques appliquéesen
dc.relation.forthcomingnonen
dc.relation.forthcomingprintnonen
dc.description.ssrncandidatenonen
dc.description.halcandidateouien
dc.description.readershiprechercheen
dc.description.audienceInternationalen
dc.relation.Isversionofjnlpeerreviewedouien
dc.relation.Isversionofjnlpeerreviewedouien
dc.date.updated2019-11-05T11:07:25Z
hal.identifierhal-02348016*
hal.version1*
hal.update.actionupdateFiles*
hal.author.functionaut
hal.author.functionaut


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record