• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Softening bilevel problems via two-scale Gibbs measures

Carlier, Guillaume; Mallozzi, Lina (2019), Softening bilevel problems via two-scale Gibbs measures, Set-Valued and Variational Analysis, 30, p. 573–595. 10.1007/s11228-021-00605-0

View/Open
soft-Stackelberg-final.pdf (998.2Kb)
Type
Article accepté pour publication ou publié
Date
2019
Journal name
Set-Valued and Variational Analysis
Volume
30
Publisher
Springer
Published in
Paris
Pages
573–595
Publication identifier
10.1007/s11228-021-00605-0
Metadata
Show full item record
Author(s)
Carlier, Guillaume
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Mallozzi, Lina
Dipartimento di Matematica e Applicazioni “Renato Caccioppoli”
Abstract (EN)
We introduce a new, and elementary, approximation method for bilevel optimization problems motivated by Stackelberg leader-follower games. Our technique is based on the notion of two-scale Gibbs measures. The first scale corresponds to the cost function of the follower and the second scale to that of the leader. We explain how to choose the weights corresponding to these two scales under very general assumptions and establish rigorous Γ-convergence results. An advantage of our method is that it is applicable both to optimistic and to pessimistic bilevel problems.
Subjects / Keywords
bilevel optimization; Stackelberg games; Gibbs measures; Γ-convergence

Related items

Showing items related by title and author.

  • Thumbnail
    The bang-bang property in some parabolic bilinear optimal control problems via two-scale asymptotic expansions 
    Mazari, Idriss (2022) Document de travail / Working paper
  • Thumbnail
    Two-scale simulation of Maxwell's equations 
    Salmon, Stéphanie; Jund, Sébastien; Abboud, Hyam; Zorgati, Hamdi; Sonnendrücker, Eric (2005-08) Communication / Conférence
  • Thumbnail
    Optimisation of the total population size with respect to the initial condition for semilinear parabolic equations: Two-scale expansions and symmetrisations. 
    Mazari, Idriss; Nadin, Grégoire; Toledo Marrero, Ana (2021) Article accepté pour publication ou publié
  • Thumbnail
    Bose gases at positive temperature and non-linear Gibbs measures 
    Lewin, Mathieu; Nam, Phan Thành; Rougerie, Nicolas (2015) Communication / Conférence
  • Thumbnail
    Geodesics for a class of distances in the space of probability measures 
    Nazaret, Bruno; Carlier, Guillaume; Cardaliaguet, Pierre (2013) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo