Show simple item record

dc.contributor.authorKomorowski, Tomasz*
dc.contributor.authorOlla, Stefano*
dc.contributor.authorRyzhik, Lenya*
dc.date.accessioned2019-10-14T10:05:49Z
dc.date.available2019-10-14T10:05:49Z
dc.date.issued2020
dc.identifier.issn0091-1798
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/20130
dc.language.isoenen
dc.subjectDiffusion Limits from Kinetic Equations
dc.subjectFractional Laplacian
dc.subjectStable Processes
dc.subjectBoundary Conditions at Interface
dc.subject.ddc520en
dc.titleFractional diffusion limit for a kinetic equation with an interface
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenWe consider the limit of a linear kinetic equation, with reflection-transmission-absorption at an interface, with a degenerate scattering kernel. The equation arise from a microscopic chain of oscillators in contact with a heat bath. In the absence of the interface, the solutions exhibit a superdiffusive behavior in the long time limit. With the interface, the long time limit is the unique solution of a version of the fractional in space heat equation, with reflection-transmission-absorption at the interface. The limit problem corresponds to a certain stable process that is either absorbed, reflected, or transmitted upon crossing the interface.
dc.publisher.cityParisen
dc.relation.isversionofjnlnameAnnals of Probability
dc.relation.isversionofjnlvol48
dc.relation.isversionofjnlissue5
dc.relation.isversionofjnldate2020
dc.relation.isversionofjnlpages2290-2322
dc.relation.isversionofdoi10.1214/20-AOP1423
dc.relation.isversionofjnlpublisherInstitute of Mathematical Statistics
dc.subject.ddclabelSciences connexes (physique, astrophysique)en
dc.description.ssrncandidatenon
dc.description.halcandidatenon
dc.description.readershiprecherche
dc.description.audienceInternational
dc.relation.Isversionofjnlpeerreviewedoui
dc.date.updated2020-10-14T13:10:00Z
hal.person.labIds71059*
hal.person.labIds*
hal.person.labIds*


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record