• français
    • English
  • English 
    • français
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
BIRD Home

Browse

This CollectionBy Issue DateAuthorsTitlesSubjectsJournals BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesSubjectsJournals

My Account

Login

Statistics

View Usage Statistics

Fractional diffusion limit for a kinetic equation with an interface

Thumbnail
View/Open
anomalous-diffusion-boundary-sub.pdf (449.7Kb)
Date
2020
Publisher city
Paris
Dewey
Sciences connexes (physique, astrophysique)
Sujet
Diffusion Limits from Kinetic Equations; Fractional Laplacian; Stable Processes; Boundary Conditions at Interface
Journal issue
Annals of Probability
Volume
48
Number
5
Publication date
2020
Article pages
2290-2322
Publisher
Institute of Mathematical Statistics
DOI
http://dx.doi.org/10.1214/20-AOP1423
URI
https://basepub.dauphine.fr/handle/123456789/20130
Collections
  • CEREMADE : Publications
Metadata
Show full item record
Author
Komorowski, Tomasz
71059 Instytut Matematyki = Institute of Mathematics [Lublin]
Olla, Stefano
Ryzhik, Lenya
Type
Article accepté pour publication ou publié
Abstract (EN)
We consider the limit of a linear kinetic equation, with reflection-transmission-absorption at an interface, with a degenerate scattering kernel. The equation arise from a microscopic chain of oscillators in contact with a heat bath. In the absence of the interface, the solutions exhibit a superdiffusive behavior in the long time limit. With the interface, the long time limit is the unique solution of a version of the fractional in space heat equation, with reflection-transmission-absorption at the interface. The limit problem corresponds to a certain stable process that is either absorbed, reflected, or transmitted upon crossing the interface.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Content on this site is licensed under a Creative Commons 2.0 France (CC BY-NC-ND 2.0) license.