
Fractional diffusion limit for a kinetic equation with an interface
Komorowski, Tomasz; Olla, Stefano; Ryzhik, Lenya (2020), Fractional diffusion limit for a kinetic equation with an interface, Annals of Probability, 48, 5, p. 2290-2322. 10.1214/20-AOP1423
Type
Article accepté pour publication ou publiéDate
2020Journal name
Annals of ProbabilityVolume
48Number
5Publisher
Institute of Mathematical Statistics
Published in
Paris
Pages
2290-2322
Publication identifier
Metadata
Show full item recordAuthor(s)
Komorowski, TomaszInstytut Matematyki = Institute of Mathematics [Lublin]
Olla, Stefano

Ryzhik, Lenya
Abstract (EN)
We consider the limit of a linear kinetic equation, with reflection-transmission-absorption at an interface, with a degenerate scattering kernel. The equation arise from a microscopic chain of oscillators in contact with a heat bath. In the absence of the interface, the solutions exhibit a superdiffusive behavior in the long time limit. With the interface, the long time limit is the unique solution of a version of the fractional in space heat equation, with reflection-transmission-absorption at the interface. The limit problem corresponds to a certain stable process that is either absorbed, reflected, or transmitted upon crossing the interface.Subjects / Keywords
Diffusion Limits from Kinetic Equations; Fractional Laplacian; Stable Processes; Boundary Conditions at InterfaceRelated items
Showing items related by title and author.
-
Basile, Giada; Komorowski, Tomasz; Olla, Stefano (2019) Article accepté pour publication ou publié
-
Komorowski, Tomasz; Olla, Stefano; Ryzhik, Lenya; Spohn, Herbert (2020) Article accepté pour publication ou publié
-
Ryzhik, Lenya; Olla, Stefano; Komorowski, Tomasz (2013) Article accepté pour publication ou publié
-
Komorowski, Tomasz; Olla, Stefano (2020) Article accepté pour publication ou publié
-
Komorowski, Tomasz; Olla, Stefano; Simon, Marielle (2021) Article accepté pour publication ou publié