hal.structure.identifier | CEntre de REcherches en MAthématiques de la DEcision [CEREMADE] | |
dc.contributor.author | Evans, Josephine | |
dc.date.accessioned | 2019-10-12T13:02:03Z | |
dc.date.available | 2019-10-12T13:02:03Z | |
dc.date.issued | 2021 | |
dc.identifier.issn | 0036-1410 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/20113 | |
dc.language.iso | en | en |
dc.subject | Convergence to equilibrium | |
dc.subject | Hypocoercivity | |
dc.subject | Linear Boltzmann Equation | |
dc.subject | φ-entropy | |
dc.subject | Logarithmic Sobolev inequality | |
dc.subject | Beckner Inequality | |
dc.subject.ddc | 515 | en |
dc.title | Hypocoercivity in Phi-entropy for the linear relaxation Boltzmann equation on the Torus | |
dc.type | Article accepté pour publication ou publié | |
dc.description.abstracten | This paper studies convergence to equilibrium for the spatially inhomogeneous linear relaxation Boltzmann equation in Boltzmann entropy and related entropy functionals, the p-entropies. Villani proved in [28] entropic hypocoercivity for a class of PDEs in a Hörmander sum of squares form. It was an open question to prove such a result for an operator which does not share this form. We prove a closed entropy-entropy production inequalityà la Villani which implies exponentially fast convergence to equilibrium for the linear Boltzmann equation with a quantitative rate. The key new idea appearing in our proof is the use of a total derivative of the entropy of a projection of our solution to compensate for an error term which appears when using non-linear entropies. We also extend the proofs for hypocoercivity for the linear relaxation Boltzmann to the case of Φ-entropy functionals. | |
dc.publisher.city | Paris | en |
dc.relation.isversionofjnlname | SIAM Journal on Mathematical Analysis | |
dc.relation.isversionofjnlvol | 53 | |
dc.relation.isversionofjnlissue | 2 | |
dc.relation.isversionofjnldate | 2021 | |
dc.relation.isversionofjnlpages | 18 | |
dc.relation.isversionofdoi | 10.1137/19M1277631 | |
dc.relation.isversionofjnlpublisher | SIAM - Society for Industrial and Applied Mathematics | |
dc.subject.ddclabel | Analyse | en |
dc.description.ssrncandidate | non | |
dc.description.halcandidate | non | |
dc.description.readership | recherche | |
dc.description.audience | International | |
dc.relation.Isversionofjnlpeerreviewed | oui | |
dc.date.updated | 2023-02-21T13:05:22Z | |
hal.author.function | aut | |