Improved interpolation inequalities and stability
dc.contributor.author | Dolbeault, Jean
HAL ID: 87 ORCID: 0000-0003-4234-2298 | |
dc.contributor.author | Esteban, Maria J.
HAL ID: 738381 ORCID: 0000-0003-1700-9338 | |
dc.date.accessioned | 2019-10-12T12:44:49Z | |
dc.date.available | 2019-10-12T12:44:49Z | |
dc.date.issued | 2020 | |
dc.identifier.issn | 2169-0375 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/20112 | |
dc.language.iso | en | en |
dc.subject | Sobolev inequality | |
dc.subject | Gagliardo-Nirenberg inequalities | |
dc.subject | Interpolation | |
dc.subject | log- arithmic Sobolev inequality | |
dc.subject | Poincaré inequality | |
dc.subject | heat equation | |
dc.subject | nonlinear diffusion | |
dc.subject.ddc | 515 | en |
dc.title | Improved interpolation inequalities and stability | |
dc.type | Article accepté pour publication ou publié | |
dc.description.abstracten | For exponents in the subcritical range, we revisit some optimal interpolation inequalities on the sphere with carré du champ methods and use the remainder terms to produce improved inequalities. The method provides us with lower estimates of the optimal constants in the symmetry breaking range and stability estimates for the optimal functions. Some of these results can be reformulated in the Euclidean space using the stereographic projection. | |
dc.publisher.city | Paris | en |
dc.relation.isversionofjnlname | Advanced Nonlinear Studies | |
dc.relation.isversionofjnlvol | 20 | |
dc.relation.isversionofjnlissue | 2 | |
dc.relation.isversionofjnldate | 2020 | |
dc.relation.isversionofjnlpages | 277–291 | |
dc.relation.isversionofdoi | 10.1515/ans-2020-2080 | |
dc.relation.isversionofjnlpublisher | De Gruyter | |
dc.subject.ddclabel | Analyse | en |
dc.description.ssrncandidate | non | |
dc.description.halcandidate | non | |
dc.description.readership | recherche | |
dc.description.audience | International | |
dc.relation.Isversionofjnlpeerreviewed | oui | |
dc.date.updated | 2020-12-15T08:46:03Z |