Show simple item record

dc.contributor.authorDolbeault, Jean
HAL ID: 87
ORCID: 0000-0003-4234-2298
dc.contributor.authorEsteban, Maria J.
HAL ID: 738381
ORCID: 0000-0003-1700-9338
dc.date.accessioned2019-10-12T12:44:49Z
dc.date.available2019-10-12T12:44:49Z
dc.date.issued2020
dc.identifier.issn2169-0375
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/20112
dc.language.isoenen
dc.subjectSobolev inequality
dc.subjectGagliardo-Nirenberg inequalities
dc.subjectInterpolation
dc.subjectlog- arithmic Sobolev inequality
dc.subjectPoincaré inequality
dc.subjectheat equation
dc.subjectnonlinear diffusion
dc.subject.ddc515en
dc.titleImproved interpolation inequalities and stability
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenFor exponents in the subcritical range, we revisit some optimal interpolation inequalities on the sphere with carré du champ methods and use the remainder terms to produce improved inequalities. The method provides us with lower estimates of the optimal constants in the symmetry breaking range and stability estimates for the optimal functions. Some of these results can be reformulated in the Euclidean space using the stereographic projection.
dc.publisher.cityParisen
dc.relation.isversionofjnlnameAdvanced Nonlinear Studies
dc.relation.isversionofjnlvol20
dc.relation.isversionofjnlissue2
dc.relation.isversionofjnldate2020
dc.relation.isversionofjnlpages277–291
dc.relation.isversionofdoi10.1515/ans-2020-2080
dc.relation.isversionofjnlpublisherDe Gruyter
dc.subject.ddclabelAnalyseen
dc.description.ssrncandidatenon
dc.description.halcandidatenon
dc.description.readershiprecherche
dc.description.audienceInternational
dc.relation.Isversionofjnlpeerreviewedoui
dc.date.updated2020-12-15T08:46:03Z


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record