• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Aide
  • Connexion
  • Langue 
    • Français
    • English
Consulter le document 
  •   Accueil
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • Consulter le document
  •   Accueil
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • Consulter le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Afficher

Toute la baseCentres de recherche & CollectionsAnnée de publicationAuteurTitreTypeCette collectionAnnée de publicationAuteurTitreType

Mon compte

Connexion

Enregistrement

Statistiques

Documents les plus consultésStatistiques par paysAuteurs les plus consultés
Thumbnail

Dynamics of several rigid bodies in a two-dimensional ideal fluid and convergence to vortex systems

Glass, Olivier; Sueur, Franck (2019-10), Dynamics of several rigid bodies in a two-dimensional ideal fluid and convergence to vortex systems. https://basepub.dauphine.fr/handle/123456789/20102

Voir/Ouvrir
1910.03158.pdf (847.6Kb)
Type
Document de travail / Working paper
Date
2019-10
Éditeur
Cahier de recherche CEREMADE, Université Paris-Dauphine
Titre de la collection
Cahier de recherche CEREMADE, Université Paris-Dauphine
Ville d’édition
Paris
Pages
75
Métadonnées
Afficher la notice complète
Auteur(s)
Glass, Olivier
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Sueur, Franck
Institut de Mathématiques de Bordeaux [IMB]
Résumé (EN)
We consider the motion of several solids in a bounded cavity filled with a perfect incompressible fluid, in two dimensions. The solids move according to Newton's law, under the influence of the fluid's pressure, and the fluid dynamics is driven by the 2D incompressible Euler equations, which are set on the time-dependent domain corresponding to the cavity deprived of the sets occupied by the solids. We assume that the fluid vorticity is initially bounded and that the circulations around the solids may be non-zero. The existence of a unique corresponding solution, \`a la Yudovich, to this system, up to a possible collision, is known. In this paper we identify the limit dynamics of the system when the radius of some of the solids converge to zero depending on how, for each body, the inertia is scaled with the radius. We obtain in the limit some point vortex systems for the solids converging to particles and a form of Newton's law for the solids that have a fixed radius; for the fluid we obtain an Euler-type system. This extends earlier works to the case of several moving rigid bodies. A crucial point is to understand the interaction, through the fluid, between small moving solids, and for that we use some normal forms of the ODEs driving the motion of the solids in two steps: first we use a normal form for the system coupling the time-evolution of all the solids to obtain a rough estimate of the acceleration of the bodies, then we turn to some normal forms that are specific to each small solid, with an appropriate modulation related to the influence of the other solids and of the fluid vorticity, to obtain some precise uniform a priori estimates of the velocities of the bodies, and then pass to the limit.
Mots-clés
rigid bodies; vortex system

Publications associées

Affichage des éléments liés par titre et auteur.

  • Vignette de prévisualisation
    Dynamics of rigid bodies in a two dimensional incompressible perfect fluid 
    Glass, Olivier; Lacave, Christophe; Munnier, Alexandre; Sueur, Franck (2019) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    On the motion of a rigid body in a two-dimensional irregular ideal flow 
    Glass, Olivier; Sueur, Franck (2012) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    External boundary control of the motion of a rigid body immersed in a perfect two-dimensional fluid 
    Glass, Olivier; Kolumban, Jozsef; Sueur, Franck (2020) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Point vortex dynamics as zero-radius limit of the motion of a rigid body in an irrotational fluid 
    Glass, Olivier; Munnier, Alexandre; Sueur, Franck (2018) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Uniqueness results for weak solutions of two-dimensional fluid-solid systems 
    Sueur, Franck; Glass, Olivier (2015) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Tél. : 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo