• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Aide
  • Connexion
  • Langue 
    • Français
    • English
Consulter le document 
  •   Accueil
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • Consulter le document
  •   Accueil
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • Consulter le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Afficher

Toute la baseCentres de recherche & CollectionsAnnée de publicationAuteurTitreTypeCette collectionAnnée de publicationAuteurTitreType

Mon compte

Connexion

Enregistrement

Statistiques

Documents les plus consultésStatistiques par paysAuteurs les plus consultés
Thumbnail

How Bad is the Freedom to Flood-It?

Belmonte, Rémy; Khosravian Ghadikolaei, Mehdi; Kiyomi, Masashi; Lampis, Michael; Otachi, Yota (2019), How Bad is the Freedom to Flood-It?, Journal of Graph Algorithms and Applications, 23, 2, p. 111-134. 10.7155/jgaa.00486

Voir/Ouvrir
how_bad.pdf (662.9Kb)
Type
Article accepté pour publication ou publié
Date
2019
Nom de la revue
Journal of Graph Algorithms and Applications
Volume
23
Numéro
2
Éditeur
Brown University
Pages
111-134
Identifiant publication
10.7155/jgaa.00486
Métadonnées
Afficher la notice complète
Auteur(s)
Belmonte, Rémy

Khosravian Ghadikolaei, Mehdi

Kiyomi, Masashi

Lampis, Michael cc

Otachi, Yota
Résumé (EN)
Fixed-Flood-It and Free-Flood-It are combinatorial problems on graphs that generalize a very popular puzzle called Flood-It. Both problems consist of recoloring moves whose goal is to produce a monochromatic ("flooded") graph as quickly as possible. Their difference is that in Free-Flood-It the player has the additional freedom of choosing the vertex to play in each move. In this paper, we investigate how this freedom affects the complexity of the problem. It turns out that the freedom is bad in some sense. We show that some cases trivially solvable for Fixed-Flood-It become intractable for Free-Flood-It. We also show that some tractable cases for Fixed-Flood-It are still tractable for Free-Flood-It but need considerably more involved arguments. We finally present some combinatorial properties connecting or separating the two problems. In particular, we show that the length of an optimal solution for Fixed-Flood-It is always at most twice that of Free-Flood-It, and this is tight.
Mots-clés
flood-filling game; parameterized complexity

Publications associées

Affichage des éléments liés par titre et auteur.

  • Vignette de prévisualisation
    Parameterized Complexity of (A,ℓ)-Path Packing 
    Belmonte, Rémy; Hanaka, Tesshu; Kanzaki, Masaaki; Kiyomi, Masashi; Kobayashi, Yasuaki; Kobayashi, Yusuke; Lampis, Michael; Ono, Hirotaka; Otachi, Yota (2022) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Independent Set Reconfiguration Parameterized by Modular-Width 
    Belmonte, Rémy; Hanaka, Tesshu; Lampis, Michael; Ono, Hirotaka; Otachi, Yota (2019) Communication / Conférence
  • Vignette de prévisualisation
    Token Sliding on Split Graphs 
    Belmonte, Rémy; Kim, Eun Jung; Lampis, Michael; Mitsou, Valia; Otachi, Yota; Sikora, Florian (2019) Communication / Conférence
  • Vignette de prévisualisation
    Parameterized Complexity of Safe Set 
    Belmonte, Rémy; Hanaka, Tesshu; Katsikarelis, Ioannis; Lampis, Michael; Ono, Hirotaka; Otachi, Yota (2019) Communication / Conférence
  • Vignette de prévisualisation
    Token Sliding on Split Graphs 
    Sikora, Florian; Belmonte, Rémy; Kim, Eun Jung; Lampis, Michael; Mitsou, Valia; Otachi, Yota (2020) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Tél. : 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo