
On the Maxwell-Stefan diffusion limit for a reactive mixture of polyatomic gases in non- isothermal setting.
Anwasia, Benjamin; Bisi, Marzia; Salvarani, Francesco; Soares, Ana Jacinta (2019-06), On the Maxwell-Stefan diffusion limit for a reactive mixture of polyatomic gases in non- isothermal setting.. https://basepub.dauphine.fr/handle/123456789/20060
Voir/Ouvrir
Type
Document de travail / Working paperLien vers un document non conservé dans cette base
https://arxiv.org/abs/1906.11766Date
2019-06Titre de la collection
Cahier de recherche CEREMADE, Université Paris-DauphineVille d’édition
Paris
Pages
32
Métadonnées
Afficher la notice complèteAuteur(s)
Anwasia, BenjaminBisi, Marzia
DIPARTIMENTO DI MATEMATICA, UNIVERSITÀ DI PARMA
Salvarani, Francesco
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Soares, Ana Jacinta
Résumé (EN)
In this article we deduce a mathematical model of Maxwell-Stefan type for a reactive mixture of polyatomic gases with a continuous structure of internal energy. The equations of the model are derived in the diffusive limit of a kinetic system of Boltzmann equations for the considered mixture, in the general non-isothermal setting. The asymptotic analysis of the kinetic system is performed under a reactive-diffusive scaling for which mechanical collisions are dominant with respect to chemical reactions. The resulting system couples the Maxwell-Stefan equations for the diffusive fluxes with the evolution equations for the number densities of the chemical species and the evolution equation for the temperature of the mixture. The production terms due to the chemical reaction and the Maxwell-Stefan diffusion coefficients are moreover obtained in terms of the collisional kernels and parameters of the kinetic model.Mots-clés
Maxwell-Stefan system; Reaction-diffusion equations; Kinetic theory; Boltzmann equation; Polyatomic gas mixtures; Chemical reactions; Diffusive limitPublications associées
Affichage des éléments liés par titre et auteur.
-
Hutridurga, Harsha; Salvarani, Francesco (2017) Article accepté pour publication ou publié
-
Salvarani, Francesco; Soares, Ana Jacinta (2018) Article accepté pour publication ou publié
-
Existence and uniqueness analysis of a non-isothermal cross-diffusion system of Maxwell–Stefan type Hutridurga, Harsha; Salvarani, Francesco (2018) Article accepté pour publication ou publié
-
Barletti, Luigi; Salvarani, Francesco (2016) Article accepté pour publication ou publié
-
Charles, Fréderique; Salvarani, Francesco (2019) Article accepté pour publication ou publié