Learning Heteroscedastic Models by Convex Programming under Group Sparsity
hal.structure.identifier | Centre de Recherche en Économie et Statistique [CREST] | |
dc.contributor.author | Dalalyan, Arnak S.
HAL ID: 1524 | |
hal.structure.identifier | Laboratoire d'Analyse et de Mathématiques Appliquées [LAMA] | |
dc.contributor.author | Hebiri, Mohamed | |
hal.structure.identifier | CEntre de REcherches en MAthématiques de la DEcision [CEREMADE] | |
dc.contributor.author | Meziani, Katia
HAL ID: 2110 | |
hal.structure.identifier | Laboratoire Traitement et Communication de l'Information [LTCI] | |
dc.contributor.author | Salmon, Joseph
HAL ID: 170495 ORCID: 0000-0002-3181-0634 | |
dc.date.accessioned | 2019-10-02T08:48:23Z | |
dc.date.available | 2019-10-02T08:48:23Z | |
dc.date.issued | 2013 | |
dc.identifier.issn | 2640-3498 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/19957 | |
dc.language.iso | en | en |
dc.subject | heteroscedastic regression | en |
dc.subject | group sparsity | en |
dc.subject | time series prediction | en |
dc.subject.ddc | 515 | en |
dc.title | Learning Heteroscedastic Models by Convex Programming under Group Sparsity | en |
dc.type | Communication / Conférence | |
dc.description.abstracten | Popular sparse estimation methods based on ℓ1-relaxation, such as the Lasso and the Dantzig selector, require the knowledge of the variance of the noise in order to properly tune the regularization parameter. This constitutes a major obstacle in applying these methods in several frameworks---such as time series, random fields, inverse problems---for which the noise is rarely homoscedastic and its level is hard to know in advance. In this paper, we propose a new approach to the joint estimation of the conditional mean and the conditional variance in a high-dimensional (auto-) regression setting. An attractive feature of the proposed estimator is that it is efficiently computable even for very large scale problems by solving a second-order cone program (SOCP). We present theoretical analysis and numerical results assessing the performance of the proposed procedure. | en |
dc.identifier.citationpages | 379–387 | en |
dc.relation.ispartoftitle | Volume 28: International Conference on Machine Learning, 17-19 June 2013, Atlanta, Georgia, USA | en |
dc.relation.ispartofpublname | Proceedings of Machine Learning Research | en |
dc.relation.ispartofdate | 2013 | |
dc.relation.ispartofpages | 1497 | en |
dc.identifier.urlsite | http://proceedings.mlr.press/v28/dalalyan13.html | en |
dc.subject.ddclabel | Analyse | en |
dc.relation.conftitle | International Conference on Machine Learning | en |
dc.relation.confdate | 2013-06 | |
dc.relation.confcity | Atlanta | en |
dc.relation.confcountry | United States | en |
dc.relation.forthcoming | non | en |
dc.description.ssrncandidate | non | en |
dc.description.halcandidate | non | en |
dc.description.readership | recherche | en |
dc.description.audience | International | en |
dc.relation.Isversionofjnlpeerreviewed | non | en |
dc.relation.Isversionofjnlpeerreviewed | non | en |
dc.date.updated | 2019-10-02T08:42:39Z | |
hal.author.function | aut | |
hal.author.function | aut | |
hal.author.function | aut | |
hal.author.function | aut |