
Learning Heteroscedastic Models by Convex Programming under Group Sparsity
Dalalyan, Arnak S.; Hebiri, Mohamed; Meziani, Katia; Salmon, Joseph (2013), Learning Heteroscedastic Models by Convex Programming under Group Sparsity, Volume 28: International Conference on Machine Learning, 17-19 June 2013, Atlanta, Georgia, USA, Proceedings of Machine Learning Research, p. 379–387
Voir/Ouvrir
Type
Communication / ConférenceLien vers un document non conservé dans cette base
http://proceedings.mlr.press/v28/dalalyan13.htmlDate
2013Titre du colloque
International Conference on Machine LearningDate du colloque
2013-06Ville du colloque
AtlantaPays du colloque
United StatesTitre de l'ouvrage
Volume 28: International Conference on Machine Learning, 17-19 June 2013, Atlanta, Georgia, USAÉditeur
Proceedings of Machine Learning Research
Nombre de pages
1497Pages
379–387
Métadonnées
Afficher la notice complèteAuteur(s)
Dalalyan, Arnak S.Centre de Recherche en Économie et Statistique [CREST]
Hebiri, Mohamed
Laboratoire d'Analyse et de Mathématiques Appliquées [LAMA]
Meziani, Katia
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Salmon, Joseph

Laboratoire Traitement et Communication de l'Information [LTCI]
Résumé (EN)
Popular sparse estimation methods based on ℓ1-relaxation, such as the Lasso and the Dantzig selector, require the knowledge of the variance of the noise in order to properly tune the regularization parameter. This constitutes a major obstacle in applying these methods in several frameworks---such as time series, random fields, inverse problems---for which the noise is rarely homoscedastic and its level is hard to know in advance. In this paper, we propose a new approach to the joint estimation of the conditional mean and the conditional variance in a high-dimensional (auto-) regression setting. An attractive feature of the proposed estimator is that it is efficiently computable even for very large scale problems by solving a second-order cone program (SOCP). We present theoretical analysis and numerical results assessing the performance of the proposed procedure.Mots-clés
heteroscedastic regression; group sparsity; time series predictionPublications associées
Affichage des éléments liés par titre et auteur.
-
Dalalyan, Arnak S.; Hebiri, Mohamed; Meziani, Katia; Salmon, Joseph (2013) Communication / Conférence
-
Meziani, Katia; Hebiri, Mohamed; Butucea, Cristina; Alquier, Pierre (2013) Article accepté pour publication ou publié
-
Carlier, Guillaume; Dupuy, Arnaud; Galichon, Alfred; Sun, Yifei (2021) Document de travail / Working paper
-
Lounici, Karim; Meziani, Katia; Peyré, Gabriel (2018) Article accepté pour publication ou publié
-
Peyré, Gabriel; Meziani, Katia; Alquier, Pierre (2013) Article accepté pour publication ou publié