Show simple item record

dc.contributor.authorHaas, Bénédicte
dc.contributor.authorMiermont, Grégory
dc.date.accessioned2009-09-28T07:15:58Z
dc.date.available2009-09-28T07:15:58Z
dc.date.issued2004
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/1991
dc.descriptionJournal électronique : http://www.math.washington.edu/~ejpecp/index.phpen
dc.language.isoenen
dc.subjectProbabilitésen
dc.subject.ddc519en
dc.titleThe genealogy of self-similar fragmentations with negative index as a continuum random treeen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenWe encode a certain class of stochastic fragmentation processes, namely self-similar fragmentation processes with a negative index of self-similarity, into a metric family tree which belongs to the family of Continuum Random Trees of Aldous. When the splitting times of the fragmentation are dense near 0, the tree can in turn be encoded into a continuous height function, just as the Brownian Continuum Random Tree is encoded in a normalized Brownian excursion. Under mild hypotheses, we then compute the Hausdor® dimensions of these trees, and the maximal HÄ older exponents of the height functions.en
dc.relation.isversionofjnlnameElectronic Journal of Probability
dc.relation.isversionofjnlvol9en
dc.relation.isversionofjnlissuepaper 4en
dc.relation.isversionofjnldate2004
dc.relation.isversionofjnlpages57-97en
dc.description.sponsorshipprivateouien
dc.relation.isversionofjnlpublisherInstitute of Mathematical Statisticsen
dc.subject.ddclabelProbabilités et mathématiques appliquéesen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record