A Continuity Question of Dubins and Savage
Laraki, Rida (2017), A Continuity Question of Dubins and Savage, Journal of applied probability and statistics, 54, 2, p. 462-473. 10.1017/jpr.2017.11
Type
Article accepté pour publication ou publiéDate
2017Journal name
Journal of applied probability and statisticsVolume
54Number
2Publisher
ISOSS Publications
Pages
462-473
Publication identifier
Metadata
Show full item recordAuthor(s)
Laraki, Rida
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
Lester Dubins and Leonard Savage posed the question as to what extent the optimal reward function U of a leavable gambling problem varies continuously in the gambling house Γ, which specifies the stochastic processes available to a player, and the utility function u, which determines the payoff for each process. Here a distance is defined for measurable houses with a Borel state space and a bounded Borel measurable utility. A trivial example shows that the mapping Γ ↦ U is not always continuous for fixed u. However, it is lower semicontinuous in the sense that, if Γ n converges to Γ, then lim inf U n ≥ U. The mapping u ↦ U is continuous in the supnorm topology for fixed Γ, but is not always continuous in the topology of uniform convergence on compact sets. Dubins and Savage observed that a failure of continuity occurs when a sequence of superfair casinos converges to a fair casino, and queried whether this is the only source of discontinuity for the special gambling problems called casinos. For the distance used here, an example shows that there can be discontinuity even when all the casinos are subfair.Subjects / Keywords
Gambling theory; Markov decision theory convergence of value functionsRelated items
Showing items related by title and author.
-
Bich, Philippe; Laraki, Rida (2017) Article accepté pour publication ou publié
-
Hofbauer, Josef; Laraki, Rida; Renault, Jérôme (2014) Article accepté pour publication ou publié
-
Balinski, Michel; Laraki, Rida (2011) Ouvrage
-
Laraki, Rida; Mertikopoulos, Panayotis (2015) Article accepté pour publication ou publié
-
Gossner, Olivier; Laraki, Rida; Tomala, Tristan (2004-11) Document de travail / Working paper