• français
    • English
  • English 
    • français
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
BIRD Home

Browse

This CollectionBy Issue DateAuthorsTitlesSubjectsJournals BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesSubjectsJournals

My Account

Login

Statistics

View Usage Statistics

The genealogy of self-similar fragmentations with negative index as a continuum random tree

Thumbnail
Date
2004
Notes
Journal électronique : http://www.math.washington.edu/~ejpecp/index.php
Dewey
Probabilités et mathématiques appliquées
Sujet
Probabilités
Journal issue
Electronic Journal of Probability
Volume
9
Number
paper 4
Publication date
2004
Article pages
57-97
Publisher
Institute of Mathematical Statistics
URI
https://basepub.dauphine.fr/handle/123456789/1991
Collections
  • CEREMADE : Publications
Metadata
Show full item record
Author
Haas, Bénédicte
Miermont, Grégory
Type
Article accepté pour publication ou publié
Abstract (EN)
We encode a certain class of stochastic fragmentation processes, namely self-similar fragmentation processes with a negative index of self-similarity, into a metric family tree which belongs to the family of Continuum Random Trees of Aldous. When the splitting times of the fragmentation are dense near 0, the tree can in turn be encoded into a continuous height function, just as the Brownian Continuum Random Tree is encoded in a normalized Brownian excursion. Under mild hypotheses, we then compute the Hausdor® dimensions of these trees, and the maximal HÄ older exponents of the height functions.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Content on this site is licensed under a Creative Commons 2.0 France (CC BY-NC-ND 2.0) license.