
Mean-field Langevin System, Optimal Control and Deep Neural Networks
Hu, Kaitong; Kazeykina, Anna; Ren, Zhenjie (2019-09), Mean-field Langevin System, Optimal Control and Deep Neural Networks. https://basepub.dauphine.fr/handle/123456789/19860
View/ Open
Type
Document de travail / Working paperDate
2019-09Publisher
Cahier de recherche CEREMADE, Université Paris-Dauphine
Series title
Cahier de recherche CEREMADE, Université Paris-DauphinePublished in
Paris
Pages
25
Metadata
Show full item recordAuthor(s)
Hu, KaitongCentre de Mathématiques Appliquées - Ecole Polytechnique [CMAP]
Kazeykina, Anna
Laboratoire de Mathématiques d'Orsay [LMO]
Ren, Zhenjie
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
In this paper, we study a regularised relaxed optimal control problem and, in particular, we are concerned with the case where the control variable is of large dimension. We introduce a system of mean-field Langevin equations, the invariant measure of which is shown to be the optimal control of the initial problem under mild conditions. Therefore, this system of processes can be viewed as a continuous-time numerical algorithm for computing the optimal control. As an application, this result endorses the solvability of the stochastic gradient descent algorithm for a wide class of deep neural networks.Subjects / Keywords
Mean-Field Langevin Dynamics; Gradient Flow; Neural NetworksRelated items
Showing items related by title and author.
-
Hu, Kaitong; Ren, Zhenjie; Siska, David; Szpruch, Lukasz (2021) Article accepté pour publication ou publié
-
Conforti, Giovanni; Kazeykina, Anna; Ren, Zhenjie (2022) Article accepté pour publication ou publié
-
Kazeykina, Anna; Ren, Zhenjie; Tan, Xiaolu; Yang, Junjian (2020) Document de travail / Working paper
-
Chen, Rui (2019-07-19) Thèse
-
Chen, Fan; Ren, Zhenjie; Wang, Songbo (2022) Document de travail / Working paper