• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Mean-field Langevin System, Optimal Control and Deep Neural Networks

Hu, Kaitong; Kazeykina, Anna; Ren, Zhenjie (2019-09), Mean-field Langevin System, Optimal Control and Deep Neural Networks. https://basepub.dauphine.fr/handle/123456789/19860

View/Open
1909.07278(1).pdf (292.5Kb)
Type
Document de travail / Working paper
Date
2019-09
Publisher
Cahier de recherche CEREMADE, Université Paris-Dauphine
Series title
Cahier de recherche CEREMADE, Université Paris-Dauphine
Published in
Paris
Pages
25
Metadata
Show full item record
Author(s)
Hu, Kaitong
Centre de Mathématiques Appliquées - Ecole Polytechnique [CMAP]
Kazeykina, Anna
Laboratoire de Mathématiques d'Orsay [LMO]
Ren, Zhenjie
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
In this paper, we study a regularised relaxed optimal control problem and, in particular, we are concerned with the case where the control variable is of large dimension. We introduce a system of mean-field Langevin equations, the invariant measure of which is shown to be the optimal control of the initial problem under mild conditions. Therefore, this system of processes can be viewed as a continuous-time numerical algorithm for computing the optimal control. As an application, this result endorses the solvability of the stochastic gradient descent algorithm for a wide class of deep neural networks.
Subjects / Keywords
Mean-Field Langevin Dynamics; Gradient Flow; Neural Networks

Related items

Showing items related by title and author.

  • Thumbnail
    Mean-Field Langevin Dynamics and Energy Landscape of Neural Networks 
    Hu, Kaitong; Ren, Zhenjie; Siska, David; Szpruch, Lukasz (2021) Article accepté pour publication ou publié
  • Thumbnail
    Game on Random Environement, Mean-field Langevin System and Neural Networks 
    Conforti, Giovanni; Kazeykina, Anna; Ren, Zhenjie (2022) Article accepté pour publication ou publié
  • Thumbnail
    Ergodicity of the underdamped mean-field Langevin dynamics 
    Kazeykina, Anna; Ren, Zhenjie; Tan, Xiaolu; Yang, Junjian (2020) Document de travail / Working paper
  • Thumbnail
    Dynamic optimal control for distress large financial networks and Mean field systems with jumps 
    Chen, Rui (2019-07-19) Thèse
  • Thumbnail
    Uniform-in-Time Propagation of Chaos for Mean Field Langevin Dynamics 
    Chen, Fan; Ren, Zhenjie; Wang, Songbo (2022) Document de travail / Working paper
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo