
Component-wise approximate Bayesian computation via Gibbs-like steps
Clarté, Grégoire; Ryder, Robin J.; Robert, Christian P.; Stoehr, Julien (2019), Component-wise approximate Bayesian computation via Gibbs-like steps. https://basepub.dauphine.fr/handle/123456789/19680
Voir/Ouvrir
Type
Document de travail / Working paperLien vers un document non conservé dans cette base
https://hal.archives-ouvertes.fr/hal-02274914v1Date
2019Éditeur
Cahier de recherche CEREMADE, Université Paris-Dauphine
Titre de la collection
Cahier de recherche CEREMADEVille d’édition
Paris
Pages
30
Métadonnées
Afficher la notice complèteAuteur(s)
Clarté, GrégoireCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Ryder, Robin J.
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Robert, Christian P.
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Stoehr, Julien

CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Résumé (EN)
Approximate Bayesian computation methods are useful for generative models with intractable likelihoods. These methods are however sensitive to the dimension of the parameter space, requiring exponentially increasing resources as this dimension grows. To tackle this difficulty, we explore a Gibbs version of the ABC approach that runs component-wise approximate Bayesian computation steps aimed at the corresponding conditional posterior distributions, and based on summary statistics of reduced dimensions. While lacking the standard justifications for the Gibbs sampler, the resulting Markov chain is shown to converge in distribution under some partial independence conditions. The associated stationary distribution can further be shown to be close to the true posterior distribution and some hierarchical versions of the proposed mechanism enjoy a closed form limiting distribution. Experiments also demonstrate the gain in efficiency brought by the Gibbs version over the standard solution.Mots-clés
Approximate Bayesian computation; Gibbs sampler; hierarchical Bayes model; curse of dimension- ality; conditional distributions; convergence of Markov chains; incompatible conditionalsPublications associées
Affichage des éléments liés par titre et auteur.
-
Clarté, Grégoire; Robert, Christian P.; Ryder, Robin; Stoehr, Julien (2021) Article accepté pour publication ou publié
-
Singh, Sumeetpal S.; Sedki, Mohammed; Jasra, Ajay; Pudlo, Pierre; Robert, Christian P.; Lee, Anthony; Marin, Jean-Michel; Kosmidis, Ioannis; Girolami, Mark; Andrieu, Christophe; Cornebise, Julien; Doucet, Arnaud; Barthelme, Simon; Chopin, Nicolas (2012) Article accepté pour publication ou publié
-
Marin, Jean-Michel; Pudlo, Pierre; Robert, Christian P.; Ryder, Robin J. (2012) Article accepté pour publication ou publié
-
Ryder, Robin J. (2015) Article accepté pour publication ou publié
-
Clarté, Grégoire; Ryder, Robin J. (2022) Document de travail / Working paper