Show simple item record

dc.contributor.authorEhrlacher, Virginie
dc.contributor.authorBakhta, Athmane
dc.contributor.authorGontier, David
dc.date.accessioned2019-09-02T09:33:12Z
dc.date.available2019-09-02T09:33:12Z
dc.date.issued2017
dc.identifier.issn1262-3377
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/19620
dc.language.isoenen
dc.subjectInverse Hillen
dc.subjectoptimisationen
dc.subjectinverse band structureen
dc.subjectperiodic Schrödinger operatoren
dc.subject.ddc515en
dc.titleNumerical reconstruction of the first band(s) in an inverse Hill's problemen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenThis paper concerns an inverse band structure problem for one dimensional periodic Schrödinger operators (Hill's operators). Our goal is to find a potential for the Hill's operator in order to reproduce as best as possible some given target bands, which may not be realisable. We recast the problem as an optimisation problem, and prove that this problem is well-posed when considering singular potentials (Borel measures). We then propose different algorithms to tackle the problem numerically.en
dc.relation.isversionofjnlnameESAIM: Control, Optimisation and Calculus of Variations
dc.relation.isversionofjnldate2019
dc.relation.isversionofdoidoi.org/10.1051/cocv/2019031en
dc.relation.isversionofjnlpublisheredp sciencesen
dc.subject.ddclabelAnalyseen
dc.relation.forthcomingouien
dc.relation.forthcomingprintouien
dc.description.ssrncandidatenonen
dc.description.halcandidatenonen
dc.description.readershiprechercheen
dc.description.audienceInternationalen
dc.relation.Isversionofjnlpeerreviewednonen
dc.relation.Isversionofjnlpeerreviewednonen
dc.date.updated2019-09-02T09:27:48Z
hal.person.labIds51621
hal.person.labIds51621
hal.person.labIds60


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record