Show simple item record

dc.contributor.authorDi Marino, Simone
dc.contributor.authorNatale, Andrea
dc.contributor.authorTahraoui, Rabah
dc.contributor.authorVialard, François-Xavier
dc.date.accessioned2019-07-24T11:47:38Z
dc.date.available2019-07-24T11:47:38Z
dc.date.issued2019-06
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/19402
dc.language.isoenen
dc.subjectDiffen
dc.subjectMetric completionen
dc.subject.ddc515en
dc.titleMetric completion of Diff([0,1]) with the H1 right-invariant metricen
dc.typeDocument de travail / Working paper
dc.description.abstractenWe consider the group of smooth increasing diffeomorphisms Diff on the unit interval endowed with the right-invariant H1 metric. We compute the metric completion of this space which appears to be the space of increasing maps of the unit interval with boundary conditions at 0 and 1. We compute the lower-semicontinuous envelope associated with the length minimizing geodesic variational problem. We discuss the Eulerian and Lagrangian formulation of this relaxation and we show that smooth solutions of the EPDiff equation are length minimizing for short times.en
dc.publisher.nameCahier de recherche CEREMADE, Université Paris-Dauphineen
dc.publisher.cityParisen
dc.identifier.citationpages18en
dc.relation.ispartofseriestitleCahier de recherche CEREMADE, Université Paris-Dauphineen
dc.identifier.urlsitehttps://hal.archives-ouvertes.fr/hal-02161686en
dc.subject.ddclabelAnalyseen
dc.identifier.citationdate2019-06
dc.description.ssrncandidatenonen
dc.description.halcandidatenonen
dc.description.readershiprechercheen
dc.description.audienceInternationalen
dc.date.updated2019-07-24T11:44:22Z
hal.person.labIds259763
hal.person.labIds60
hal.person.labIds60
hal.person.labIds3210


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record