Date
2019
Indexation documentaire
Macroéconomie
Subject
Business cycles; Markov-switching; mixed-frequency data
Code JEL
E.E3.E32; E.E3.E37; C.C2.C22
Nom de la revue
Econometric Reviews
Volume
38
Numéro
7
Date de publication
2019
Pages article
711-32
Nom de l'éditeur
Taylor & Francis
Auteur
Bessec, Marie
status unknown
Type
Article accepté pour publication ou publié
Résumé en anglais
This paper introduces a Markov-switching model in which transition probabilities depend on higher frequency indicators and their lags through polynomial weighting schemes. The MSV-MIDAS model is estimated through maximum likelihood (ML) methods with a slightly modified version of Hamilton’s filter. Monte Carlo simulations show that ML provides accurate estimates, but they suggest some caution in interpreting the tests of the parameters in the transition probabilities. We apply this new model to forecast business cycle turning points in the United States. We properly detect recessions by exploiting the link between GDP growth and higher frequency variables from financial and energy markets.