• français
    • English
  • français 
    • français
    • English
  • Connexion
JavaScript is disabled for your browser. Some features of this site may not work without it.
Accueil

Afficher

Cette collectionPar Date de CréationAuteursTitresSujetsNoms de revueToute la baseCentres de recherche & CollectionsPar Date de CréationAuteursTitresSujetsNoms de revue

Mon compte

Connexion

Statistiques

Afficher les statistiques d'usage

Efficient Discovery of Compact Maximal Behavioral Patterns from Event Logs

Thumbnail
Date
2019
Indexation documentaire
Informatique générale
Subject
Behavioral patterns; Process discovery; Pattern mining
Réf version publiée
http://dx.doi.org/10.1007/978-3-030-21290-2_36
Titre du colloque
31st International Conference on Advanced Information Systems Engineering (CAiSE 2019)
Date du colloque
06-2019
Ville du colloque
Rome
Pays du colloque
Italy
Titre de l'ouvrage
Advanced Information Systems Engineering
Auteur
Giorgini, Paolo; Weber, Barbara
Nom de l'éditeur
Springer International Publishing
Ville de l'éditeur
Berlin Heidelberg
Année
2019
Nombre total de pages
702
ISBN
978-3-030-21289-6
URL de l'ouvrage
10.1007/978-3-030-21290-2
URI
https://basepub.dauphine.fr/handle/123456789/19204
Collections
  • LAMSADE : Publications
Métadonnées
Afficher la notice complète
Auteur
Acheli, Mehdi
989 Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Grigori, Daniela
989 Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Weidlich, Matthias
253119 Humboldt-Universität zu Berlin
Type
Communication / Conférence
Nombre de pages du document
579-594
Résumé en anglais
Techniques for process discovery support the analysis of information systems by constructing process models from event logs that are recorded during system execution. In recent years, various algorithms to discover end-to-end process models have been proposed. Yet, they do not cater for domains in which process execution is highly flexible, as the unstructuredness of the resulting models renders them meaningless. It has therefore been suggested to derive insights about flexible processes by mining behavioral patterns, i.e., models of frequently recurring episodes of a process’ behavior. However, existing algorithms to mine such patterns suffer from imprecision and redundancy of the mined patterns and a comparatively high computational effort. In this work, we overcome these limitations with a novel algorithm, coined COBPAM (COmbination based Behavioral Pattern Mining). It exploits a partial order on potential patterns to discover only those that are compact and maximal, i.e. least redundant. Moreover, COBPAM exploits that complex patterns can be characterized as combinations of simpler patterns, which enables pruning of the pattern search space. Efficiency is improved further by evaluating potential patterns solely on parts of an event log. Experiments with real-world data demonstrates how COBPAM improves over the state-of-the-art in behavioral pattern mining.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Cette création est mise à disposition sous un contrat Creative Commons.