• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Time-approximation trade-offs for inapproximable problems

Bonnet, Édouard; Lampis, Michael; Paschos, Vangelis (2018), Time-approximation trade-offs for inapproximable problems, Journal of Computer and System Sciences, 92, p. 171-180. 10.1016/j.jcss.2017.09.009

Type
Article accepté pour publication ou publié
External document link
https://arxiv.org/abs/1502.05828v1
Date
2018
Journal name
Journal of Computer and System Sciences
Volume
92
Publisher
Elsevier
Pages
171-180
Publication identifier
10.1016/j.jcss.2017.09.009
Metadata
Show full item record
Author(s)
Bonnet, Édouard cc

Lampis, Michael cc
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Paschos, Vangelis
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
In this paper we focus on problems inapproximable in polynomial time and explore how quickly their approximability improves as the allowed running time is gradually increased from polynomial to (sub-)exponential. We tackle a number of problems: For Min Independent Dominating Set, Max Induced Path, Forest and Tree, for any , a simple, known scheme gives an approximation ratio of r in time roughly . We show that, if this running time could be significantly improved, the ETH would fail. For Max Minimal Vertex Cover we give a -approximation in time . We match this with a similarly tight result. We also give a -approximation for Min ATSP in time and an r-approximation for Max Grundy Coloring in time . Finally, we investigate the approximability of Min Set Cover, when measuring the running time as a function of the number of sets in the input.
Subjects / Keywords
Approximation algorithms; Exponential algorithms; Sub-exponential algorithms; Hardness of approximation

Related items

Showing items related by title and author.

  • Thumbnail
    Time-Approximation Trade-offs for Inapproximable Problems 
    Bonnet, Édouard; Lampis, Michael; Paschos, Vangelis (2016) Communication / Conférence
  • Thumbnail
    Parameterized exact and approximation algorithms for maximum k-set cover and related satisfiability problems 
    Bonnet, Édouard; Paschos, Vangelis; Sikora, Florian (2016) Article accepté pour publication ou publié
  • Thumbnail
    Purely combinatorial approximation algorithms for maximum k -vertex cover in bipartite graphs 
    Bonnet, Edouard; Escoffier, Bruno; Paschos, Vangelis; Stamoulis, Georgios (2018) Article accepté pour publication ou publié
  • Thumbnail
    Structural parameters, tight bounds, and approximation for (k,r)-center 
    Katsikarelis, Ioannis; Lampis, Michael; Paschos, Vangelis (2019) Article accepté pour publication ou publié
  • Thumbnail
    Sub-exponential Approximation Schemes for CSPs: From Dense to Almost Sparse 
    Fotakis, Dimitris; Lampis, Michael; Paschos, Vangelis (2016) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo