An FPT 2-Approximation for Tree-Cut Decomposition
hal.structure.identifier | Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE] | |
dc.contributor.author | Kim, Eun Jung | * |
hal.structure.identifier | Department of Mathematical Sciences, KAIST | |
dc.contributor.author | Oum, Sang-il | * |
hal.structure.identifier | Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier [LIRMM] | |
dc.contributor.author | Paul, Christophe
HAL ID: 4726 | * |
hal.structure.identifier | Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier [LIRMM] | |
dc.contributor.author | Sau Valls, Ignasi
HAL ID: 7331 ORCID: 0000-0002-8981-9287 | * |
hal.structure.identifier | Computer Technology Institute and Press "Diophantus" | |
dc.contributor.author | Thilikos, Dimitrios M.
HAL ID: 178742 ORCID: 0000-0003-0470-1800 | * |
dc.date.accessioned | 2019-06-25T10:44:49Z | |
dc.date.available | 2019-06-25T10:44:49Z | |
dc.date.issued | 2018 | |
dc.identifier.issn | 0178-4617 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/19025 | |
dc.language.iso | en | en |
dc.subject | Fixed-parameter tractable algorithm | en |
dc.subject | Tree-cut width | en |
dc.subject | Approximation algorithm | en |
dc.subject.ddc | 518 | en |
dc.title | An FPT 2-Approximation for Tree-Cut Decomposition | en |
dc.type | Article accepté pour publication ou publié | |
dc.description.abstracten | The tree-cut width of a graph is a graph parameter defined by Wollan (J Combin Theory, Ser B, 110:47–66, 2015) with the help of tree-cut decompositions. In certain cases, tree-cut width appears to be more adequate than treewidth as an invariant that, when bounded, can accelerate the resolution of intractable problems. While designing algorithms for problems with bounded tree-cut width, it is important to have a parametrically tractable way to compute the exact value of this parameter or, at least, some constant approximation of it. In this paper we give a parameterized 2-approximation algorithm for the computation of tree-cut width; for an input n-vertex graph G and an integer w, our algorithm either confirms that the tree-cut width of G is more than w or returns a tree-cut decomposition of G certifying that its tree-cut width is at most 2w, in time 2O(w2logw)⋅n2 . Prior to this work, no constructive parameterized algorithms, even approximated ones, existed for computing the tree-cut width of a graph. As a consequence of the Graph Minors series by Robertson and Seymour, only the existence of a decision algorithm was known. | en |
dc.relation.isversionofjnlname | Algorithmica | |
dc.relation.isversionofjnlvol | 80 | en |
dc.relation.isversionofjnlissue | 1 | en |
dc.relation.isversionofjnldate | 2018-01 | |
dc.relation.isversionofjnlpages | 116-135 | en |
dc.relation.isversionofdoi | 10.1007/s00453-016-0245-5 | en |
dc.identifier.urlsite | https://arxiv.org/abs/1509.04880v1 | en |
dc.relation.isversionofjnlpublisher | Springer | en |
dc.subject.ddclabel | Modèles mathématiques. Algorithmes | en |
dc.relation.forthcoming | non | en |
dc.relation.forthcomingprint | non | en |
dc.description.ssrncandidate | non | en |
dc.description.halcandidate | oui | en |
dc.description.readership | recherche | en |
dc.description.audience | International | en |
dc.relation.Isversionofjnlpeerreviewed | oui | en |
dc.relation.Isversionofjnlpeerreviewed | oui | en |
dc.date.updated | 2019-03-31T15:20:05Z | |
hal.faultCode | {"duplicate-entry":{"hal-01690385":{"doi":"1.0"}}} | |
hal.author.function | aut | |
hal.author.function | aut | |
hal.author.function | aut | |
hal.author.function | aut | |
hal.author.function | aut |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |