Show simple item record

hal.structure.identifierLaboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
dc.contributor.authorBenhamou, Eric
hal.structure.identifierLaboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
dc.contributor.authorAtif, Jamal
HAL ID: 15689
hal.structure.identifierLaboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
dc.contributor.authorLaraki, Rida
HAL ID: 179670
ORCID: 0000-0002-4898-2424
dc.date.accessioned2019-05-17T13:44:25Z
dc.date.available2019-05-17T13:44:25Z
dc.date.issued2018
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/18925
dc.language.isoenen
dc.subjectDBNsen
dc.subjectCMA ESen
dc.subjecttrend detectionen
dc.subjectsystematic tradingen
dc.subject.ddc006.3en
dc.titleA new approach to learning in Dynamic Bayesian Networks (DBNs)en
dc.typeDocument de travail / Working paper
dc.description.abstractenIn this paper, we revisit the parameter learning problem, namely the estimation of model parameters for Dynamic Bayesian Networks (DBNs). DBNs are directed graphical models of stochastic processes that encompasses and generalize Hidden Markov models (HMMs) and Linear Dynamical Systems (LDSs). Whenever we apply these models to economics and finance, we are forced to make some modeling assumptions about the state dynamics and the graph topology (the DBN structure). These assumptions may be incorrectly specified and contain some additional noise compared to reality. Trying to use a best fit approach through maximum likelihood estimation may miss this point and try to fit at any price these models on data. We present here a new methodology that takes a radical point of view and instead focus on the final efficiency of our model. Parameters are hence estimated in terms of their efficiency rather than their distributional fit to the data. The resulting optimization problem that consists in finding the optimal parameters is a hard problem. We rely on Covariance Matrix Adaptation Evolution Strategy (CMA-ES) method to tackle this issue. We apply this method to the seminal problem of trend detection in financial markets. We see on numerical results that the resulting parameters seem less error prone to over fitting than traditional moving average cross over trend detection and perform better. The method developed here for algorithmic trading is general. It can be applied to other real case applications whenever there is no physical law underlying our DBNs.en
dc.publisher.namePreprint Lamsadeen
dc.publisher.cityParisen
dc.identifier.citationpages17en
dc.relation.ispartofseriestitlePreprint Lamsadeen
dc.subject.ddclabelIntelligence artificielleen
dc.description.ssrncandidatenonen
dc.description.halcandidatenonen
dc.description.readershiprechercheen
dc.description.audienceInternationalen
dc.date.updated2019-04-30T12:05:56Z
hal.author.functionaut
hal.author.functionaut
hal.author.functionaut


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record