Show simple item record

dc.contributor.authorSaltiel, David
dc.contributor.authorBenhamou, Eric
dc.date.accessioned2019-05-15T10:52:06Z
dc.date.available2019-05-15T10:52:06Z
dc.date.issued2018
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/18912
dc.language.isoenen
dc.subjectFeature selectionen
dc.subject.ddc006en
dc.titleTrade Selection with Supervised Learning and OCAen
dc.typeDocument de travail / Working paper
dc.description.abstractenIn recent years, state-of-the-art methods for supervised learning have exploited increasingly gradient boosting techniques, with mainstream efficient implementations such as xgboost or lightgbm. One of the key points in generating proficient methods is Feature Selection (FS). It consists in selecting the right valuable effective features. When facing hundreds of these features, it becomes critical to select best features. While filter and wrappers methods have come to some maturity, embedded methods are truly necessary to findthe best features set as they are hybrid methods combining features filtering and wrapping. In this work, we tackle the problem of finding through machine learning best a priori trades from an algorithmic strategy. We derive this new method using coordinate ascent optimization and using block variables. We compare our method to Recursive Feature Elimination (RFE) and Binary Coordinate Ascent (BCA). We show on a real life example the capacity of this method to select good trades a priori. Not only this method out performs the initial trading strategy as it avoids taking loosing trades, it also surpasses other method, having the smallest feature set and the highest score at the same time. The interest of this method goes beyond this simple trade classification problem as itis a very general method to determine the optimal feature set using some information about features relationship as well as using coordinate ascent optimization.en
dc.publisher.namePreprint Lamsadeen
dc.publisher.cityParisen
dc.identifier.citationpages8en
dc.relation.ispartofseriestitlePreprint Lamsadeen
dc.identifier.urlsitehttps://hal.archives-ouvertes.fr/hal-02012476en
dc.subject.ddclabelMéthodes informatiques spécialesen
dc.description.ssrncandidatenonen
dc.description.halcandidatenonen
dc.description.readershiprechercheen
dc.description.audienceInternationalen
dc.date.updated2019-04-30T12:05:19Z
hal.person.labIds157346
hal.person.labIds989


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record