• français
    • English
  • français 
    • français
    • English
  • Connexion
JavaScript is disabled for your browser. Some features of this site may not work without it.
Accueil

Afficher

Cette collectionPar Date de CréationAuteursTitresSujetsNoms de revueToute la baseCentres de recherche & CollectionsPar Date de CréationAuteursTitresSujetsNoms de revue

Mon compte

Connexion

Statistiques

Afficher les statistiques d'usage

Connecting Sharpe ratio and Student t-statistic, and beyond

Thumbnail
Date
2018
Ville de l'éditeur
Paris
Nom de l'éditeur
Preprint Lamsade
Titre de la collection
Preprint Lamsade
Lien vers un document non conservé dans cette base
https://hal.archives-ouvertes.fr/hal-02012448
Indexation documentaire
Probabilités et mathématiques appliquées
Subject
Sharpe ratio; Student distribution; compounding effect on Sharpe; AR(1); CramerRao bound
Code JEL
C.C1.C12; G.G1.G11
URI
https://basepub.dauphine.fr/handle/123456789/18910
Collections
  • LAMSADE : Publications
Métadonnées
Afficher la notice complète
Auteur
Benhamou, Eric
989 Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Type
Document de travail / Working paper
Nombre de pages du document
23
Résumé en anglais
Sharpe ratio is widely used in asset management to compare and benchmark funds and asset managers. It computes the ratio of the excess return over the strategy standard deviation. However, the elements to compute the Sharpe ratio, namely, the expected returns and the volatilities are unknown numbers and need to be estimated statistically.This means that the Sharpe ratio used by funds is subject to be error prone because of statistical estimation error. Lo (2002), Mertens (2002) derive explicit expressions for the statistical distribution of the Sharpe ratio using standard asymptotic theory under several sets of assumptions (independent normally distributed - and identically distributed returns). In this paper, we provide the exact distribution of the Sharpe ratio for independent normally distributed return. In this case, the Sharpe ratio statisticis up to a rescaling factor a non centered Student distribution whose characteristics have been widely studied by statisticians. The asymptotic behavior of our distribution provides the result of Lo (2002). We also illustrate the fact that the empirical Sharperatio is asymptotically optimal in the sense that it achieves the Cramer Rao bound. We then study the empirical SR under AR(1) assumptions and investigate the effect ofcompounding period on the Sharpe (computing the annual Sharpe with monthly datafor instance). We finally provide general formula in this case of heteroscedasticity and autocorrelation.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Cette création est mise à disposition sous un contrat Creative Commons.