• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

A framework for mining process models from emails logs

Jlailaty, Diana; Grigori, Daniela; Belhajjame, Khalid (2016), A framework for mining process models from emails logs. https://basepub.dauphine.fr/handle/123456789/18905

View/Open
1609.06127v1.pdf (451.4Kb)
Type
Document de travail / Working paper
Date
2016
Publisher
Preprint Lamsade
Series title
Preprint Lamsade
Published in
Paris
Pages
18
Metadata
Show full item record
Author(s)
Jlailaty, Diana
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Grigori, Daniela
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Belhajjame, Khalid
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
Due to its wide use in personal, but most importantly, professional contexts, email represents a valuable source of information that can be harvested for understanding, reengineering and repurposing undocumented business processes of companies and institutions. Towards this aim, a few researchers investigated the problem of extracting process oriented information from email logs in order to take benefit of the many available process mining techniques and tools. In this paper we go further in this direction, by proposing a new method for mining process models from email logs that leverage unsupervised machine learning techniques with little human involvement. Moreover, our method allows to semi-automatically label emails with activity names, that can be used for activity recognition in new incoming emails. A use case demonstrates the usefulness of the proposed solution using a modest in size, yet real-world, dataset containing emails that belong to two different process models
Subjects / Keywords
emails

Related items

Showing items related by title and author.

  • Thumbnail
    Mining Business Process Activities from Email Logs 
    Jlailaty, Diana; Grigori, Daniela; Belhajjame, Khalid (2017) Communication / Conférence
  • Thumbnail
    Multi-level clustering for extracting process-related information from email logs 
    Jlailaty, Diana; Grigori, Daniela; Belhajjame, Khalid (2017) Communication / Conférence
  • Thumbnail
    Business Process Instances Discovery from Email Logs 
    Jlailaty, Diana; Grigori, Daniela; Belhajjame, Khalid (2017) Communication / Conférence
  • Thumbnail
    Mining Business Process Information from Emails Logs for Process Models Discovery 
    Al Jlailaty, Diana (2019-11-15) Thèse
  • Thumbnail
    Email Business Activities Extraction and Annotation 
    Jlailaty, Diana; Grigori, Daniela; Belhajjame, Khalid (2018) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo